Mebs Stefan, Beckmann Jens
Institut für Experimentalphysik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany.
Institut für Anorganische Chemie und Kristallographie, Universität Bremen , Leobener Straße 7, 28359 Bremen, Germany.
J Phys Chem A. 2017 Oct 12;121(40):7717-7725. doi: 10.1021/acs.jpca.7b06977. Epub 2017 Sep 28.
Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor-acceptor complexes XBNY (1, 1a-1h), XAlNY (2, 2a-2h), XBPY (3, 3a-3h), and XAlPY (4, 4a-4h) reveal that the donor-acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for 1-4; X = H, Y = Me for 1a-4a; X = H, Y = Cl for 1b-4b; X = Me, Y = H for 1c-4c; X, Y = Me for 1d-4d; X = Me, Y = Cl for 1e-4e; X = Cl, Y = H for 1f-4f; X = Cl, Y = Me for 1g-4g; X, Y = Cl for 1h-4h). The phosphinoboranes XBPY (3, 3a-3h) in general and ClBPMe (3f) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes XAlNY (2, 2a-2h) in general and MeAlNCl (2e) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes XBNY (1, 1a-1h) and the phosphinoalanes XAlPY (4, 4a-4h) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (ΔEN = 0.15) < AlP (ΔEN = 0.58) < BN (ΔEN = 1.00) < AlN (ΔEN = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate.
针对一组36种给体-受体配合物XBNY (1, 1a - 1h)、XAlNY (2, 2a - 2h)、XBPY (3, 3a - 3h)和XAlPY (4, 4a - 4h),源自分子中的原子(AIM)、电子定域性指标(ELI - D)、非共价相互作用指数(NCI)和密度重叠区域指标(DORI)工具包的实空间键合指标(RSBI)计算表明,给体-受体键在不同程度上包含共价和离子相互作用(1 - 4中X = Y = H;1a - 4a中X = H,Y = Me;1b - 4b中X = H,Y = Cl;1c - 4c中X = Me,Y = H;1d - 4d中X, Y = Me;1e - 4e中X = Me,Y = Cl;1f - 4f中X = Cl,Y = H;1g - 4g中X = Cl,Y = Me;1h - 4h中X, Y = Cl)。一般而言的膦硼烷XBPY (3, 3a - 3h),特别是ClBPMe (3f),显示出最大的共价贡献和最小的离子贡献。一般而言的氨基铝烷XAlNY (2, 2a - 2h),特别是MeAlNCl (2e),显示出最小的共价贡献和最大的离子贡献。氨基硼烷XBNY (1, 1a - 1h)和膦基铝烷XAlPY (4, 4a - 4h)处于膦硼烷和氨基铝烷之间。共价性和离子性的程度与电负性差值BP(ΔEN = 0.15)< AlP(ΔEN = 0.58)< BN(ΔEN = 1.00)< AlN(ΔEN = 1.43)以及先前发表的能量分解分析(EDA)相关。为了说明在路易斯公式表示中这两种贡献的重要性,所有化合物都应给出两个共振式,即表示共价性的带有形式电荷的标准形式,以及从给体指向受体原子以强调离子性的箭头表示法。如果路易斯公式主要用于展示原子连接性,则应展示最显著的形式。因此,用箭头表示氨基铝烷是合理的;然而,对于膦硼烷,带有形式电荷的标准形式更合适。