Suppr超能文献

提高空间分辨率能解决扩散 MRI 的交叉纤维问题吗?

Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3787. Epub 2017 Sep 15.

Abstract

It is now widely recognized that voxels with crossing fibers or complex geometrical configurations present a challenge for diffusion MRI (dMRI) reconstruction and fiber tracking, as well as microstructural modeling of brain tissues. This "crossing fiber" problem has been estimated to affect anywhere from 30% to as many as 90% of white matter voxels, and it is often assumed that increasing spatial resolution will decrease the prevalence of voxels containing multiple fiber populations. The aim of this study is to estimate the extent of the crossing fiber problem as we progressively increase the spatial resolution, with the goal of determining whether it is possible to mitigate this problem with higher resolution spatial sampling. This is accomplished using ex vivo MRI data of the macaque brain, followed by histological analysis of the same specimen to validate these measurements, as well as to extend this analysis to resolutions not yet achievable in practice with MRI. In both dMRI and histology, we find unexpected results: the prevalence of crossing fibers increases as we increase spatial resolution. The problem of crossing fibers appears to be a fundamental limitation of dMRI associated with the complexity of brain tissue, rather than a technical problem that can be overcome with advances such as higher fields and stronger gradients.

摘要

现在人们普遍认识到,对于扩散磁共振成像(dMRI)重建和纤维追踪,以及脑组织的微观结构建模,具有交叉纤维或复杂几何结构的体素是一个挑战。据估计,这种“交叉纤维”问题会影响到 30%到 90%的白质体素,而且通常认为增加空间分辨率会降低包含多个纤维群的体素的出现频率。本研究的目的是估计随着空间分辨率的逐步提高,交叉纤维问题的程度,以确定是否可以通过更高分辨率的空间采样来减轻这个问题。这是通过对猕猴大脑的离体 MRI 数据进行分析来实现的,然后对同一标本进行组织学分析,以验证这些测量值,并将这种分析扩展到目前 MRI 还无法实现的分辨率。在 dMRI 和组织学中,我们都发现了意想不到的结果:随着空间分辨率的提高,交叉纤维的出现频率也在增加。交叉纤维的问题似乎是与脑组织复杂性相关的 dMRI 的一个基本限制,而不是一个可以通过更高的场强和更强的梯度等先进技术来克服的技术问题。

相似文献

1
Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?
NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3787. Epub 2017 Sep 15.
2
Histological validation of per-bundle water diffusion metrics within a region of fiber crossing following axonal degeneration.
Neuroimage. 2019 Nov 1;201:116013. doi: 10.1016/j.neuroimage.2019.116013. Epub 2019 Jul 19.
3
Histological validation of diffusion MRI fiber orientation distributions and dispersion.
Neuroimage. 2018 Jan 15;165:200-221. doi: 10.1016/j.neuroimage.2017.10.046. Epub 2017 Oct 23.
4
Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.
Neuroimage. 2016 Apr 1;129:185-197. doi: 10.1016/j.neuroimage.2016.01.022. Epub 2016 Jan 21.
5
Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using k-dSTEAM at 9.4T.
Neuroimage. 2019 Nov 15;202:116087. doi: 10.1016/j.neuroimage.2019.116087. Epub 2019 Aug 10.
6
Axon diameter mapping in crossing fibers with diffusion MRI.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):82-9. doi: 10.1007/978-3-642-23629-7_11.
7
A joint space-angle regularization approach for single 4D diffusion image super-resolution.
Magn Reson Med. 2018 Nov;80(5):2173-2187. doi: 10.1002/mrm.27184. Epub 2018 Apr 19.
8
Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.
Neuroimage. 2015 Nov 15;122:373-84. doi: 10.1016/j.neuroimage.2015.07.074. Epub 2015 Aug 1.
9
10
Regularization of bending and crossing white matter fibers in MRI Q-ball fields.
Magn Reson Imaging. 2011 Sep;29(7):916-26. doi: 10.1016/j.mri.2011.05.002. Epub 2011 Jun 25.

引用本文的文献

1
Dual-encoded magnetization transfer and diffusion imaging and its application to tract-specific microstructure mapping.
Imaging Neurosci (Camb). 2023 Sep 26;1. doi: 10.1162/imag_a_00019. eCollection 2023.
8
Super-resolution mapping of anisotropic tissue structure with diffusion MRI and deep learning.
Sci Rep. 2025 Feb 24;15(1):6580. doi: 10.1038/s41598-025-90972-7.
10
Multi-tensor fixel-based metrics in tractometry: application to multiple sclerosis.
Front Neurosci. 2024 Dec 20;18:1467786. doi: 10.3389/fnins.2024.1467786. eCollection 2024.

本文引用的文献

1
Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.
NMR Biomed. 2016 Apr;29(4):400-10. doi: 10.1002/nbm.3484. Epub 2016 Jan 19.
2
Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.
Neuroimage. 2016 Apr 1;129:185-197. doi: 10.1016/j.neuroimage.2016.01.022. Epub 2016 Jan 21.
3
A diffusion tensor MRI atlas of the postmortem rhesus macaque brain.
Neuroimage. 2015 Aug 15;117:408-16. doi: 10.1016/j.neuroimage.2015.05.072. Epub 2015 May 31.
4
Validation of High-Resolution Tractography Against In Vivo Tracing in the Macaque Visual Cortex.
Cereb Cortex. 2015 Nov;25(11):4299-309. doi: 10.1093/cercor/bhu326. Epub 2015 Mar 18.
5
3D structure tensor analysis of light microscopy data for validating diffusion MRI.
Neuroimage. 2015 May 1;111:192-203. doi: 10.1016/j.neuroimage.2015.01.061. Epub 2015 Feb 7.
6
Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16574-9. doi: 10.1073/pnas.1405672111. Epub 2014 Nov 3.
7
In vivo estimation of dispersion anisotropy of neurites using diffusion MRI.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):241-8. doi: 10.1007/978-3-319-10443-0_31.
8
Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy.
Neuroimage. 2014 Dec;103:10-19. doi: 10.1016/j.neuroimage.2014.09.006. Epub 2014 Sep 16.
9
A diffusion-tensor-based white matter atlas for rhesus macaques.
PLoS One. 2014 Sep 9;9(9):e107398. doi: 10.1371/journal.pone.0107398. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验