School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Magn Reson Med. 2018 Nov;80(5):2173-2187. doi: 10.1002/mrm.27184. Epub 2018 Apr 19.
Low signal-to-noise-ratio and limited scan time of diffusion magnetic resonance imaging (dMRI) in current clinical settings impede obtaining images with high spatial and angular resolution (HSAR) for a reliable fiber reconstruction with fine anatomical details. To overcome this problem, we propose a joint space-angle regularization approach to reconstruct HSAR diffusion signals from a single 4D low resolution (LR) dMRI, which is down-sampled in both 3D-space and q-space.
Different from the existing works which combine multiple 4D LR diffusion images acquired using specific acquisition protocols, the proposed method reconstructs HSAR dMRI from only a single 4D dMRI by exploring and integrating two key priors, that is, the nonlocal self-similarity in the spatial domain as a prior to increase spatial resolution and ridgelet approximations in the diffusion domain as another prior to increase the angular resolution of dMRI. To more effectively capture nonlocal self-similarity in the spatial domain, a novel 3D block-based nonlocal means filter is imposed as the 3D image space regularization term which is accurate in measuring the similarity and fast for 3D reconstruction. To reduce computational complexity, we use the L -norm instead of sparsity constraint on the representation coefficients.
Experimental results demonstrate that the proposed method can obtain the HSAR dMRI efficiently with approximately 2% per-voxel root-mean-square error between the actual and reconstructed HSAR dMRI.
The proposed approach can effectively increase the spatial and angular resolution of the dMRI which is independent of the acquisition protocol, thus overcomes the inherent resolution limitation of imaging systems.
当前临床环境中的扩散磁共振成像(dMRI)信噪比低且扫描时间有限,这阻碍了获得具有高空间和角度分辨率(HSAR)的图像,从而无法进行具有精细解剖细节的可靠纤维重建。为了解决这个问题,我们提出了一种联合空间-角度正则化方法,从单个 4D 低分辨率(LR)dMRI 中重建 HSAR 扩散信号,该方法在 3D 空间和 q 空间中都进行了下采样。
与使用特定采集协议获取多个 4D LR 扩散图像的现有方法不同,该方法仅从单个 4D dMRI 中重建 HSAR dMRI,通过探索和整合两个关键先验来实现这一点,即空间域中的非局部自相似性作为增加空间分辨率的先验,以及扩散域中的脊波近似作为增加 dMRI 角度分辨率的另一个先验。为了更有效地捕获空间域中的非局部自相似性,我们提出了一种新颖的 3D 基于块的非局部均值滤波器作为 3D 图像空间正则化项,该滤波器在测量相似性方面非常准确,并且在 3D 重建方面速度很快。为了降低计算复杂度,我们使用 L范数而不是稀疏性约束来表示系数。
实验结果表明,该方法可以有效地获得 HSAR dMRI,实际和重建的 HSAR dMRI 之间的每个体素均方根误差约为 2%。
所提出的方法可以有效地提高 dMRI 的空间和角度分辨率,而与采集协议无关,从而克服了成像系统固有的分辨率限制。