Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, PR China; Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China.
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China.
J Colloid Interface Sci. 2018 Jan 1;509:235-244. doi: 10.1016/j.jcis.2017.09.017. Epub 2017 Sep 7.
Improving the conductivity and specific surface area of electrospun carbon nanofibers (CNFs) is beneficial to a rapid realization of their applications in energy storage field. Here, a series of one-dimensional C/MO (M=Mn, Cu, Co) nanostructures are first prepared by a simple two-step process consisting of electrospinning and thermal treatment. The presence of low-valence MO enhances the porosity and conductivity of nanocomposites to some extent through expanding graphitic domains or mixing metallic Cu into the CNF substrates. Next, the C/MO frameworks are coated with MnO nanosheets/nanowhiskers (C/MO@MnO), during which process the low-valence MO can partly reduce KMnO so as to mitigate the consumption of CNFs. When used as active materials for supercapacitor electrodes, the obtained C/MO@MnO exhibit excellent electrochemical performances in comparison with the common CNFs@MnO (CM) core-shell electrode due to the combination of desired functions of the individual components and the introduction of extra synergistic effect. It is believed that these results will provide an alternative way to further increase the capacitive properties of CNFs- or metal oxide-based nanomaterials and potentially stimulate the investigation on other kinds of C/MO composite nanostructures for various applications.
提高电纺碳纳米纤维(CNF)的电导率和比表面积有利于快速实现其在储能领域的应用。在这里,通过包括静电纺丝和热处理的两步法,首次制备了一系列一维 C/MO(M=Mn、Cu、Co)纳米结构。低化合价 MO 的存在通过扩展石墨域或将金属 Cu 混入 CNF 基质在一定程度上提高了纳米复合材料的多孔性和导电性。接下来,用 MnO 纳米片/纳米线(C/MO@MnO)对 C/MO 框架进行包覆,在此过程中,低化合价 MO 可以部分还原 KMnO,从而减少 CNF 的消耗。当用作超级电容器电极的活性材料时,与常见的 CNFs@MnO(CM)核壳电极相比,所获得的 C/MO@MnO 表现出优异的电化学性能,这是由于各个组分的所需功能的结合以及额外协同效应的引入。相信这些结果将为进一步提高基于 CNF 或金属氧化物的纳米材料的电容性能提供一种替代方法,并有可能激发对其他类型的 C/MO 复合纳米结构的研究,以用于各种应用。