Stefanovski Darko, Tang George, Wawrowsky Kolja, Boston Raymond C, Lambrecht Nils, Tajbakhsh Jian
Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Oncotarget. 2017 Jul 5;8(34):57278-57301. doi: 10.18632/oncotarget.18985. eCollection 2017 Aug 22.
Prostate cancer (PCa) management can benefit from novel concepts/biomarkers for reducing the current 20-30% chance of false-negative diagnosis with standard histopathology of biopsied tissue.
We explored the potential of selected epigenetic markers in combination with validated histopathological markers, 3D high-content imaging, cell-by-cell analysis, and probabilistic classification in generating novel detailed maps of biomarker heterogeneity in patient tissues, and PCa diagnosis. We used consecutive biopsies/radical prostatectomies from five patients for building a database of ∼140,000 analyzed cells across all tissue compartments and for model development; and from five patients and the two well-characterized HPrEpiC primary and LNCaP cancer cell types for model validation.
Principal component analysis presented highest covariability for the four biomarkers 4',6-diamidino-2-phenylindole, 5-methylcytosine, 5-hydroxymethylcytosine, and alpha-methylacyl-CoA racemase in the epithelial tissue compartment. The panel also showed best performance in discriminating between normal and cancer-like cells in prostate tissues with a sensitivity and specificity of 85%, correctly classified 87% of HPrEpiC as healthy and 99% of LNCaP cells as cancer-like, identified a majority of aberrant cells within histopathologically benign tissues at baseline diagnosis of patients that were later diagnosed with adenocarcinoma. Using k-nearest neighbor classifier with cells from an initial patient biopsy, the biomarkers were able to predict cancer stage and grade of prostatic tissue that occurred at later prostatectomy with 79% accuracy.
Our approach showed favorable diagnostic values to identify the portion and pathological category of aberrant cells in a small subset of sampled tissue cells, correlating with the degree of malignancy beyond baseline.
前列腺癌(PCa)的管理可受益于新的概念/生物标志物,以降低目前通过活检组织的标准组织病理学检查出现20%-30%假阴性诊断的可能性。
我们探索了所选表观遗传标志物与经过验证的组织病理学标志物、3D高内涵成像、逐细胞分析以及概率分类相结合的潜力,以生成患者组织中生物标志物异质性的新的详细图谱,并用于PCa诊断。我们使用了来自五名患者的连续活检样本/根治性前列腺切除术样本,以建立一个涵盖所有组织区域的约140,000个分析细胞的数据库,并用于模型开发;还使用了来自五名患者以及两种特征明确的HPrEpiC原代细胞和LNCaP癌细胞类型的样本进行模型验证。
主成分分析显示,上皮组织区域中的四种生物标志物4',6-二脒基-2-苯基吲哚、5-甲基胞嘧啶、5-羟甲基胞嘧啶和α-甲基酰基辅酶A消旋酶具有最高的协变性。该标志物组合在区分前列腺组织中的正常细胞和类癌细胞方面也表现出最佳性能,灵敏度和特异性均为85%,将87%的HPrEpiC正确分类为健康细胞,99%的LNCaP细胞正确分类为类癌细胞,在后来被诊断为腺癌的患者基线诊断时,在组织病理学良性组织中识别出了大多数异常细胞。使用来自最初患者活检的细胞的k近邻分类器,这些生物标志物能够以79%的准确率预测后来前列腺切除术中出现的前列腺组织的癌症分期和分级。
我们的方法在识别一小部分采样组织细胞中异常细胞的比例和病理类别方面显示出良好的诊断价值,与基线以上的恶性程度相关。