Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
J Chem Phys. 2017 Sep 14;147(10):104702. doi: 10.1063/1.4987019.
Periodic supercell models of electric double layers formed at the interface between a charged surface and an electrolyte are subject to serious finite size errors and require certain adjustments in the treatment of the long-range electrostatic interactions. In a previous publication Zhang and Sprik [Phys. Rev. B 94, 245309 (2016)], we have shown how this can be achieved using finite field methods. The test system was the familiar simple point charge model of a NaCl aqueous solution confined between two oppositely charged walls. Here this method is extended to the interface between the (111) polar surface of a NaCl crystal and a high concentration NaCl aqueous solution. The crystal is kept completely rigid and the compensating charge screening the polarization can only be provided by the electrolyte. We verify that the excess electrolyte ionic charge at the interface conforms to the Tasker 1/2 rule for compensating charge in the theory of polar rock salt (111) surfaces. The interface can be viewed as an electric double layer with a net charge. We define a generalized Helmholtz capacitance C which can be computed by varying the applied electric field. We find C=8.23 μF cm, which should be compared to the 4.23 μF cm for the (100) non-polar surface of the same NaCl crystal. This is rationalized by the observation that compensating ions shed their first solvation shell adsorbing as contact ions pairs on the polar surface.
在带电表面和电解质之间形成的双电层的周期性超晶格模型受到严重的有限尺寸误差的影响,并且需要在处理长程静电相互作用时进行某些调整。在之前的出版物中,Zhang 和 Sprik [Phys. Rev. B 94, 245309 (2016)] 展示了如何使用有限场方法实现这一点。测试系统是 NaCl 水溶液的熟悉的简单点电荷模型,该模型被限制在两个带相反电荷的壁之间。在这里,该方法扩展到 NaCl 晶体的(111)极性表面和高浓度 NaCl 水溶液之间的界面。晶体保持完全刚性,只能由电解质提供屏蔽极化的补偿电荷。我们验证了界面处的过量电解质离子电荷符合极性岩盐(111)表面理论中补偿电荷的 Tasker 1/2 规则。界面可以看作是带有净电荷的双电层。我们定义了一个广义的亥姆霍兹电容 C,可以通过改变施加的电场来计算。我们发现 C=8.23 μF cm,与相同 NaCl 晶体的(100)非极性表面的 4.23 μF cm 相比。这可以通过观察到补偿离子摆脱其第一个溶剂化壳并在极性表面上吸附作为接触离子对来合理化。