Suppr超能文献

有限电位移模拟极性离子固体电解质界面:在 NaCl(111)/水溶液中的应用。

Finite electric displacement simulations of polar ionic solid-electrolyte interfaces: Application to NaCl(111)/aqueous NaCl solution.

机构信息

Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden.

出版信息

J Chem Phys. 2019 Jan 28;150(4):041716. doi: 10.1063/1.5054843.

Abstract

Tasker type III polar terminations of ionic crystals carry a net surface charge as well as a dipole moment and are fundamentally unstable. In contact with electrolytes, such polar surfaces can be stabilized by adsorption of counterions from the solution to form electric double layers. In a previous work [T. Sayer et al., J. Chem. Phys 147, 104702 (2017)], we reported on a classical force field based molecular dynamics study of a prototype model system, namely, a NaCl(111) slab interfaced with an aqueous NaCl solution on both sides. A serious hurdle in the simulation is that the finite width of the slab admits an electric field in the solid perturbing the theoretical charge balance at the interface of semi-infinite systems [half the surface charge density for NaCl(111)]. It was demonstrated that the application of a finite macroscopic field E canceling the internal electric field can recover the correct charge compensation at the interface. In the present work, we expand this method by applying a conjugate electric displacement field D. The benefits of using D instead of E as the control variable are two fold: it does not only speed up the convergence of the polarization in the simulation but also leads to a succinct expression for the biasing displacement field involving only structural parameters which are known in advance. This makes it feasible to study the charge compensating phenomenon of this prototype system with density functional theory based molecular dynamics, as shown in this work.

摘要

离子晶体的任务 III 型极性终止带有净表面电荷和偶极矩,从根本上是不稳定的。在与电解质接触时,这种极性表面可以通过从溶液中吸附抗衡离子来稳定,形成双电层。在之前的工作中[T. Sayer 等人,J. Chem. Phys 147, 104702 (2017)],我们报告了一个基于经典力场的分子动力学研究原型模型系统,即 NaCl(111) 薄片与两侧的水性 NaCl 溶液界面。模拟中的一个严重障碍是薄片的有限宽度允许固体中的电场干扰半无限系统界面处的理论电荷平衡[NaCl(111)的一半表面电荷密度]。证明了应用抵消内部电场的宏观有限电场 E 可以恢复界面处的正确电荷补偿。在目前的工作中,我们通过施加共轭电位移场 D 来扩展这种方法。使用 D 而不是 E 作为控制变量的好处有两个:它不仅可以加速模拟中的极化收敛,而且还可以得到一个简洁的偏置位移场表达式,其中只涉及事先已知的结构参数。这使得使用基于密度泛函理论的分子动力学研究这个原型系统的电荷补偿现象成为可能,如本工作所示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验