Suppr超能文献

磷酸化蛋白质组学研究表明,糖原合酶激酶-3可磷酸化多种剪接因子,并与可变剪接相关。

Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing.

作者信息

Shinde Mansi Y, Sidoli Simone, Kulej Katarzyna, Mallory Michael J, Radens Caleb M, Reicherter Amanda L, Myers Rebecca L, Barash Yoseph, Lynch Kristen W, Garcia Benjamin A, Klein Peter S

机构信息

From the Pharmacology Graduate Group.

the Penn Epigenetics Institute.

出版信息

J Biol Chem. 2017 Nov 3;292(44):18240-18255. doi: 10.1074/jbc.M117.813527. Epub 2017 Sep 15.

Abstract

Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3-dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)(S/T) sites are phosphorylated in a GSK-3-dependent manner. A comparison of WT and knock-out ( DKO) ESCs revealed prominent GSK-3-dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins RNA-Seq of WT and DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3-dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing.

摘要

糖原合酶激酶-3(GSK-3)是一种组成型活性、广泛表达的蛋白激酶,可调节多种信号通路。对GSK-3进行激酶分析以及基因和药理学操作,已在多种细胞类型中鉴定出100多种假定的GSK-3底物。基于反复出现的GSK-3共有基序((pS/pT)(S/T)),还预测了更多底物,但这一预测尚未通过分析GSK-3磷酸化蛋白质组进行验证。利用培养物中氨基酸的稳定同位素标记(SILAC)和质谱技术分析小鼠胚胎干细胞(ESC)中GSK-3依赖性磷酸化的情况,我们发现约2.4%的(pS/pT)(S/T)位点以GSK-3依赖性方式被磷酸化。野生型(WT)和双敲除(DKO)胚胎干细胞的比较显示,多种剪接因子和RNA生物合成调节因子以及调节转录、翻译和细胞分裂的蛋白质存在显著的GSK-3依赖性磷酸化。DKO降低了剪接因子RBM8A、SRSF9和PSF以及核仁蛋白NPM1和PHF6的磷酸化,并且重组GSK-3β使这些蛋白发生磷酸化。野生型和双敲除胚胎干细胞的RNA测序鉴定出约190个基因以GSK-3依赖性方式进行可变剪接,这支持了GSK-3在调节可变剪接中具有广泛作用。质谱数据还确定了GSK-3对蛋白质丰度的转录后调节,在没有GSK-3的情况下,约47种蛋白质(1.4%)的水平升高,约78种蛋白质(2.4%)的水平降低。这项研究首次对GSK-3磷酸化蛋白质组进行了无偏差分析,并有力证明了GSK-3广泛调节可变剪接。

相似文献

2
Glycogen synthase kinase-3 and alternative splicing.
Wiley Interdiscip Rev RNA. 2018 Nov;9(6):e1501. doi: 10.1002/wrna.1501. Epub 2018 Aug 17.
3
Phosphoproteomics links glycogen synthase kinase-3 to RNA splicing.
J Biol Chem. 2017 Nov 3;292(44):18256-18257. doi: 10.1074/jbc.H117.813527.
5
The nuclear GSK-3β regulated post-transcriptional processing of mRNA through phosphorylation of SC35.
Mol Cell Biochem. 2019 Jan;451(1-2):55-67. doi: 10.1007/s11010-018-3393-x. Epub 2018 Jul 20.
8
Protein -Nitrosylation Controls Glycogen Synthase Kinase 3β Function Independent of Its Phosphorylation State.
Circ Res. 2018 May 25;122(11):1517-1531. doi: 10.1161/CIRCRESAHA.118.312789. Epub 2018 Mar 21.
9
Presenilin-1 is an unprimed glycogen synthase kinase-3beta substrate.
FEBS Lett. 2006 Jul 24;580(17):4015-20. doi: 10.1016/j.febslet.2006.06.035. Epub 2006 Jun 22.
10

引用本文的文献

1
Unveiling alternative splicing dynamics in activated T lymphocytes and their implications for immune checkpoint blockade efficacy.
iScience. 2025 Apr 15;28(5):112434. doi: 10.1016/j.isci.2025.112434. eCollection 2025 May 16.
2
The essential kinase TgGSK regulates centrosome segregation and endodyogeny in .
mSphere. 2025 Apr 29;10(4):e0011125. doi: 10.1128/msphere.00111-25. Epub 2025 Mar 28.
3
The essential kinase TgGSK regulates centrosome division and endodyogeny in .
bioRxiv. 2024 Sep 27:2024.09.27.615374. doi: 10.1101/2024.09.27.615374.
4
Structural and functional effects of phosphopriming and scaffolding in the kinase GSK-3β.
Sci Signal. 2024 Sep 3;17(852):eado0881. doi: 10.1126/scisignal.ado0881.
5
A mitochondrial surveillance mechanism activated by mutations in hematologic malignancies.
bioRxiv. 2024 Apr 23:2023.06.25.546449. doi: 10.1101/2023.06.25.546449.
8
High-throughput Oligopaint screen identifies druggable 3D genome regulators.
Nature. 2023 Aug;620(7972):209-217. doi: 10.1038/s41586-023-06340-w. Epub 2023 Jul 12.
9
Alternative splicing of apoptosis genes promotes human T cell survival.
Elife. 2022 Oct 20;11:e80953. doi: 10.7554/eLife.80953.

本文引用的文献

1
RNA Splicing Modulation Selectively Impairs Leukemia Stem Cell Maintenance in Secondary Human AML.
Cell Stem Cell. 2016 Nov 3;19(5):599-612. doi: 10.1016/j.stem.2016.08.003. Epub 2016 Aug 25.
2
β-Catenin-Independent Roles of Wnt/LRP6 Signaling.
Trends Cell Biol. 2016 Dec;26(12):956-967. doi: 10.1016/j.tcb.2016.07.009. Epub 2016 Aug 24.
3
Nucleophosmin: from structure and function to disease development.
BMC Mol Biol. 2016 Aug 24;17(1):19. doi: 10.1186/s12867-016-0073-9.
4
GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock.
Cell Rep. 2016 Jul 12;16(2):357-367. doi: 10.1016/j.celrep.2016.06.005. Epub 2016 Jun 23.
5
Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis.
J Biol Chem. 2016 Jul 8;291(28):14761-72. doi: 10.1074/jbc.M116.722751. Epub 2016 May 18.
8
Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.
J Mol Biol. 2016 Jun 19;428(12):2623-2635. doi: 10.1016/j.jmb.2016.04.017. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验