Duan Liting, Hope Jen, Ong Qunxiang, Lou Hsin-Ya, Kim Namdoo, McCarthy Comfrey, Acero Victor, Lin Michael Z, Cui Bianxiao
Department of Chemistry, Stanford University, Stanford, California, 94305, USA.
Department of Bioengineering, Stanford University, Stanford, California, 94305, USA.
Nat Commun. 2017 Sep 15;8(1):547. doi: 10.1038/s41467-017-00648-8.
Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.
拟南芥隐花色素2(CRY2)可同时发生光依赖的CRY2-CRY2同源寡聚化和CRY2-CIB1异源二聚化,这两种现象都已被广泛用于光学控制细胞内过程。利用CRY2-CIB1相互作用的应用希望CRY2同源寡聚化程度最低,以避免意外的并发症,而利用CRY2-CRY2相互作用的应用则更喜欢强大的同源寡聚化。然而,由于CRY2相互作用的分子机制尚不清楚,因此无法选择CRY2相互作用的类型。在这里,我们报告CRY2-CIB1和CRY2-CRY2相互作用由CRY2两端分离良好的蛋白质界面控制。N端电荷对CRY2-CIB1相互作用至关重要。此外,两个C端电荷影响CRY2同源寡聚化,正电荷促进寡聚化,负电荷抑制寡聚化。通过设计C端电荷,我们分别开发了寡聚化增强或抑制的CRY2high和CRY2low,用于调节Raf/MEK/ERK信号通路的水平。这些结果有助于我们理解光诱导的CRY2相互作用的机制,并增强基于CRY2的光遗传学系统的可控性。隐花色素2(CRY2)可以形成光调节的CRY2-CRY2同源寡聚体或CRY2-CIB1异源二聚体,但由于缺乏相互作用机制,调节这些相互作用很困难。在这里,作者确定了促进同源寡聚体的相互作用,并引入突变以创建低寡聚化和高寡聚化版本。