McQuillen Ryan, Perez Amilcar J, Yang Xinxing, Bohrer Christopher H, Smith Erika L, Chareyre Sylvia, Tsui Ho-Ching Tiffany, Bruce Kevin E, Hla Yin Mon, McCausland Joshua W, Winkler Malcolm E, Goley Erin D, Ramamurthi Kumaran S, Xiao Jie
Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nat Commun. 2024 Dec 30;15(1):10746. doi: 10.1038/s41467-024-54974-9.
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
大多数细菌缺乏膜包裹的细胞器,而是依赖于不同亚细胞位置的大分子支架来招募具有特定功能的蛋白质。在这里,我们证明了来自拟南芥的光遗传学CRY2-CIB1系统可用于在活的大肠杆菌细胞中以不同效率将蛋白质快速引导至不同的亚细胞位置,包括类核、细胞极、细胞膜和细胞中部的分裂平面。这种光诱导的重新定位可用于快速抑制活跃分裂的大肠杆菌细胞中的胞质分裂。我们进一步表明,CRY2-CIBN的结合动力学可以通过绿光进行调节,为该系统增加了一个新的控制维度。最后,我们在另外三种细菌——枯草芽孢杆菌、新月柄杆菌和肺炎链球菌中测试了这个光遗传学系统,为该系统在细菌细胞生物学中的适用性提供了重要的参考依据。