Suppr超能文献

多价抑制剂的设计用于预防细胞摄取。

Design of Multivalent Inhibitors for Preventing Cellular Uptake.

机构信息

Faculty of Science, Masaryk University, Brno, Czech Republic.

Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

出版信息

Sci Rep. 2017 Sep 15;7(1):11689. doi: 10.1038/s41598-017-11735-7.

Abstract

Cellular entry, the first crucial step of viral infection, can be inhibited by molecules adsorbed on the virus surface. However, apart from using stronger affinity, little is known about the properties of such inhibitors that could increase their effectiveness. Our simulations showed that multivalent inhibitors can be designed to be much more efficient than their monovalent counterparts. For example, for our particular simulation model, a single multivalent inhibitor spanning 5 to 6 binding sites is enough to prevent the uptake compared to the required 1/3 of all the receptor binding sites needed to be blocked by monovalent inhibitors. Interestingly, multivalent inhibitors are more efficient in inhibiting the uptake not only due to their increased affinity but mainly due to the co-localization of the inhibited receptor binding sites at the virion's surface. Furthermore, we show that Janus-like inhibitors do not induce virus aggregation. Our findings may be generalized to other uptake processes including bacteria and drug-delivery.

摘要

细胞进入是病毒感染的关键第一步,可以被吸附在病毒表面的分子所抑制。然而,除了使用更强的亲和力之外,对于能够提高其效果的此类抑制剂的特性知之甚少。我们的模拟表明,可以设计多价抑制剂使其比单价抑制剂更有效。例如,对于我们特定的模拟模型,一个跨越 5 到 6 个结合位点的单一多价抑制剂就足以阻止病毒进入,而单价抑制剂则需要阻断三分之一的受体结合位点。有趣的是,多价抑制剂不仅由于其增加的亲和力,而且主要由于被抑制的受体结合位点在病毒粒子表面的共定位,从而更有效地抑制摄取。此外,我们表明类 Janus 抑制剂不会诱导病毒聚集。我们的发现可以推广到其他摄取过程,包括细菌和药物输送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d0/5601900/c94e052eeb7f/41598_2017_11735_Fig1_HTML.jpg

相似文献

1
Design of Multivalent Inhibitors for Preventing Cellular Uptake.
Sci Rep. 2017 Sep 15;7(1):11689. doi: 10.1038/s41598-017-11735-7.
2
Structure-based drug design for envelope protein E2 uncovers a new class of bovine viral diarrhea inhibitors that block virus entry.
Antiviral Res. 2018 Jan;149:179-190. doi: 10.1016/j.antiviral.2017.10.010. Epub 2017 Oct 12.
3
Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry.
ACS Nano. 2018 Jul 24;12(7):6429-6442. doi: 10.1021/acsnano.8b01616. Epub 2018 Jun 19.
4
Stronger Together: Multivalent Phage Capsids Inhibit Virus Entry.
Chembiochem. 2021 Feb 2;22(3):478-480. doi: 10.1002/cbic.202000536. Epub 2020 Sep 30.
6
Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
Mini Rev Med Chem. 2021;21(6):689-703. doi: 10.2174/1389557520666201117111259.
9
Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates.
Eur J Med Chem. 2017 Jul 7;134:133-139. doi: 10.1016/j.ejmech.2017.03.087. Epub 2017 Apr 2.
10
Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry.
J Hepatol. 2015 Mar;62(3):541-8. doi: 10.1016/j.jhep.2014.10.040. Epub 2014 Nov 4.

引用本文的文献

1
C-2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV-2 through Interaction with the Viral Spike (S) Protein.
J Med Chem. 2023 Aug 10;66(15):10432-10457. doi: 10.1021/acs.jmedchem.3c00576. Epub 2023 Jul 20.
2
Design and Synthesis of Oleanolic Acid Trimers to Enhance Inhibition of Influenza Virus Entry.
ACS Med Chem Lett. 2021 Nov 2;12(11):1759-1765. doi: 10.1021/acsmedchemlett.1c00374. eCollection 2021 Nov 11.
3
Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity.
Biophys J. 2018 Apr 24;114(8):1830-1846. doi: 10.1016/j.bpj.2018.03.007.
4
Organizing membrane-curving proteins: the emerging dynamical picture.
Curr Opin Struct Biol. 2018 Aug;51:99-105. doi: 10.1016/j.sbi.2018.03.018. Epub 2018 Mar 30.

本文引用的文献

1
Pathogen Inhibition by Multivalent Ligand Architectures.
J Am Chem Soc. 2016 Jul 20;138(28):8654-66. doi: 10.1021/jacs.5b12950. Epub 2016 Jul 7.
2
Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis.
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6113-8. doi: 10.1073/pnas.1521974113. Epub 2016 May 16.
3
Entry inhibitors: New advances in HCV treatment.
Emerg Microbes Infect. 2016 Jan 6;5(1):e3. doi: 10.1038/emi.2016.3.
4
Rational design of molecularly imprinted polymers.
Soft Matter. 2016 Jan 7;12(1):35-44. doi: 10.1039/c5sm02144h.
5
Influence of ligand distribution on uptake efficiency.
Soft Matter. 2015 Apr 14;11(14):2726-30. doi: 10.1039/c4sm02815e.
6
Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery.
Small. 2015 Mar;11(9-10):1055-71. doi: 10.1002/smll.201401943. Epub 2014 Nov 11.
7
Shape and orientation matter for the cellular uptake of nonspherical particles.
Nano Lett. 2014 Feb 12;14(2):687-93. doi: 10.1021/nl403949h. Epub 2014 Jan 9.
8
Spatiotemporal control and superselectivity in supramolecular polymers using multivalency.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12203-8. doi: 10.1073/pnas.1303109110. Epub 2013 Jul 8.
10
Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges.
Nanoscale. 2013 Jun 7;5(11):4870-83. doi: 10.1039/c3nr34266b. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验