Suppr超能文献

一种用于肢体H-MRSI中同时抑制水和脂质的最小相位Shinnar-Le Roux谱空间激发射频脉冲。

A minimum-phase Shinnar-Le Roux spectral-spatial excitation RF pulse for simultaneous water and lipid suppression in H-MRSI of body extremities.

作者信息

Han Paul Kyu, Ma Chao, Deng Kexin, Hu Shuang, Jee Kyung-Wook, Ying Kui, Chen Yen-Lin, El Fakhri Georges

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China.

出版信息

Magn Reson Imaging. 2018 Jan;45:18-25. doi: 10.1016/j.mri.2017.09.008. Epub 2017 Sep 14.

Abstract

PURPOSE

To develop a spectral-spatial (SPSP) excitation RF pulse for simultaneous water and lipid suppression in proton (H) magnetic resonance spectroscopic imaging (MRSI) of body extremities.

METHODS

An SPSP excitation pulse is designed to excite Creatine (Cr) and Choline (Cho) metabolite signals while suppressing the overwhelming water and lipid signals. The SPSP pulse is designed using a recently proposed multidimensional Shinnar-Le Roux (SLR) RF pulse design method. A minimum-phase spectral selectivity profile is used to minimize signal loss from T decay.

RESULTS

The performance of the SPSP pulse is evaluated via Bloch equation simulations and phantom experiments. The feasibility of the proposed method is demonstrated using three-dimensional, short repetition-time, free induction decay-based H-MRSI in the thigh muscle at 3T.

CONCLUSION

The proposed SPSP excitation pulse is useful for simultaneous water and lipid suppression. The proposed method enables new applications of high-resolution H-MRSI in body extremities.

摘要

目的

开发一种频谱空间(SPSP)激发射频脉冲,用于在肢体质子(H)磁共振波谱成像(MRSI)中同时抑制水和脂质信号。

方法

设计一种SPSP激发脉冲,以激发肌酸(Cr)和胆碱(Cho)代谢物信号,同时抑制占主导地位的水和脂质信号。SPSP脉冲采用最近提出的多维辛纳 - 勒鲁(SLR)射频脉冲设计方法进行设计。使用最小相位频谱选择性轮廓来最小化T2衰减导致的信号损失。

结果

通过布洛赫方程模拟和体模实验评估SPSP脉冲的性能。在3T下,使用基于三维、短重复时间、自由感应衰减的大腿肌肉H-MRSI证明了该方法的可行性。

结论

所提出的SPSP激发脉冲可用于同时抑制水和脂质信号。所提出的方法使高分辨率H-MRSI在肢体中的新应用成为可能。

相似文献

2
A semiadiabatic spectral-spatial spectroscopic imaging (SASSI) sequence for improved high-field MR spectroscopic imaging.
Magn Reson Med. 2016 Oct;76(4):1071-82. doi: 10.1002/mrm.26025. Epub 2015 Oct 31.
3
(1)H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses.
Magn Reson Med. 2016 Mar;75(3):933-45. doi: 10.1002/mrm.25569. Epub 2015 May 6.
4
Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
Magn Reson Med. 2020 Feb;83(2):377-390. doi: 10.1002/mrm.27980. Epub 2019 Sep 4.
5
Design of multidimensional Shinnar-Le Roux radiofrequency pulses.
Magn Reson Med. 2015 Feb;73(2):633-45. doi: 10.1002/mrm.25179. Epub 2014 Feb 27.
6
Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
Magn Reson Med. 2018 Jan;79(1):31-40. doi: 10.1002/mrm.26683. Epub 2017 Mar 31.
7
Non-water-suppressed H FID-MRSI at 3T and 9.4T.
Magn Reson Med. 2018 Aug;80(2):442-451. doi: 10.1002/mrm.27049. Epub 2017 Dec 29.
8
Nonuniform and multidimensional Shinnar-Le Roux RF pulse design method.
Magn Reson Med. 2012 Sep;68(3):690-702. doi: 10.1002/mrm.23269. Epub 2011 Dec 9.
9
Flexible water excitation for fat-free MRI at 3T using lipid insensitive binomial off-resonant RF excitation (LIBRE) pulses.
Magn Reson Med. 2018 Jun;79(6):3007-3017. doi: 10.1002/mrm.26965. Epub 2017 Nov 20.

引用本文的文献

1
3D deuterium metabolic imaging (DMI) of the human liver at 7 T using low-rank and subspace model-based reconstruction.
Magn Reson Med. 2025 May;93(5):1860-1873. doi: 10.1002/mrm.30395. Epub 2024 Dec 22.

本文引用的文献

1
Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
Magn Reson Med. 2018 Jan;79(1):31-40. doi: 10.1002/mrm.26683. Epub 2017 Mar 31.
2
High and ultra-high resolution metabolite mapping of the human brain using H FID MRSI at 9.4T.
Neuroimage. 2018 Mar;168:211-221. doi: 10.1016/j.neuroimage.2016.12.065. Epub 2016 Dec 23.
3
Compartmentalized low-rank recovery for high-resolution lipid unsuppressed MRSI.
Magn Reson Med. 2017 Oct;78(4):1267-1280. doi: 10.1002/mrm.26537. Epub 2016 Nov 11.
4
Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI.
Neuroimage. 2018 Mar;168:199-210. doi: 10.1016/j.neuroimage.2016.10.043. Epub 2016 Nov 4.
5
High-resolution H-MRSI of the brain using short-TE SPICE.
Magn Reson Med. 2017 Feb;77(2):467-479. doi: 10.1002/mrm.26130. Epub 2016 Feb 2.
6
Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging.
Magn Reson Imaging. 2016 Apr;34(3):276-9. doi: 10.1016/j.mri.2015.10.027. Epub 2015 Oct 31.
7
A semiadiabatic spectral-spatial spectroscopic imaging (SASSI) sequence for improved high-field MR spectroscopic imaging.
Magn Reson Med. 2016 Oct;76(4):1071-82. doi: 10.1002/mrm.26025. Epub 2015 Oct 31.
8
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.
9
Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.
Magn Reson Med. 2016 Feb;75(2):488-97. doi: 10.1002/mrm.25635. Epub 2015 Mar 11.
10
Design of multidimensional Shinnar-Le Roux radiofrequency pulses.
Magn Reson Med. 2015 Feb;73(2):633-45. doi: 10.1002/mrm.25179. Epub 2014 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验