Suppr超能文献

分块低秩恢复用于高分辨率脂质未压制 MRSI。

Compartmentalized low-rank recovery for high-resolution lipid unsuppressed MRSI.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa, USA.

出版信息

Magn Reson Med. 2017 Oct;78(4):1267-1280. doi: 10.1002/mrm.26537. Epub 2016 Nov 11.

Abstract

PURPOSE

To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition.

METHODS

The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization.

RESULTS

The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE) = 55 ms.

CONCLUSION

The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. Magn Reson Med 78:1267-1280, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

介绍一种从双密度螺旋采集恢复高分辨率磁共振波谱成像(MRSI)数据的新算法,以最小化脂质泄漏伪影。

方法

从双密度螺旋数据重建 MRSI 数据被公式化为一个分区低秩恢复问题。MRSI 数据集被建模为代谢物和脂质信号的总和,每个信号分别支持脑内和颅外区域,并且彼此正交。重建问题被公式化为一个优化问题,使用迭代重新加权核范数最小化来解决。

结果

该方案与数值模拟和体内数据集上的双分辨率重建算法的比较表明,该方案能够提供更高的空间分辨率和更低的脂质泄漏伪影。实验表明,该方案能够从 TE=55ms 的无脂质抑制数据集恢复代谢物图谱。

结论

所提出的重建方法和数据采集策略提供了一种高效的方法,可以在不进行脂质抑制的情况下实现高分辨率代谢物图谱。该算法将有利于快速代谢映射和扩展到多切片采集。磁共振医学 78:1267-1280,2017。©2016 年国际磁共振医学学会。

相似文献

1
Compartmentalized low-rank recovery for high-resolution lipid unsuppressed MRSI.
Magn Reson Med. 2017 Oct;78(4):1267-1280. doi: 10.1002/mrm.26537. Epub 2016 Nov 11.
3
Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
Magn Reson Med. 2020 Feb;83(2):377-390. doi: 10.1002/mrm.27980. Epub 2019 Sep 4.
4
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.
6
Simultaneous QSM and metabolic imaging of the brain using SPICE.
Magn Reson Med. 2018 Jan;79(1):13-21. doi: 10.1002/mrm.26972. Epub 2017 Oct 24.
7
High-resolution dynamic P-MRSI using a low-rank tensor model.
Magn Reson Med. 2017 Aug;78(2):419-428. doi: 10.1002/mrm.26762. Epub 2017 May 28.
8
COMPARTMENTALIZED LOW-RANK REGULARIZATION WITH ORTHOGONALITY CONSTRAINTS FOR HIGH-RESOLUTION MRSI.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:960-963. doi: 10.1109/isbi.2016.7493424. Epub 2016 Jun 16.
9
High-resolution H-MRSI of the brain using short-TE SPICE.
Magn Reson Med. 2017 Feb;77(2):467-479. doi: 10.1002/mrm.26130. Epub 2016 Feb 2.
10
Simultaneous metabolic and functional imaging of the brain using SPICE.
Magn Reson Med. 2019 Dec;82(6):1993-2002. doi: 10.1002/mrm.27865. Epub 2019 Jul 11.

引用本文的文献

2
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.
3
Achieving high-resolution H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla.
J Magn Reson. 2021 Oct;331:107048. doi: 10.1016/j.jmr.2021.107048. Epub 2021 Aug 11.
4
Method for fast lipid reconstruction and removal processing in H MRSI of the brain.
Magn Reson Med. 2021 Dec;86(6):2930-2944. doi: 10.1002/mrm.28949. Epub 2021 Aug 2.
5
DENOISING AND DEINTERLEAVING OF EPSI DATA USING STRUCTURED LOW-RANK MATRIX RECOVERY.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:679-682. doi: 10.1109/isbi.2018.8363665. Epub 2018 May 24.
7
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
8
Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
Magn Reson Med. 2020 Feb;83(2):377-390. doi: 10.1002/mrm.27980. Epub 2019 Sep 4.
9
Water removal in MR spectroscopic imaging with L2 regularization.
Magn Reson Med. 2019 Oct;82(4):1278-1287. doi: 10.1002/mrm.27824. Epub 2019 May 31.

本文引用的文献

1
Magnetic resonance spectroscopic imaging at superresolution: Overview and perspectives.
J Magn Reson. 2016 Feb;263:193-208. doi: 10.1016/j.jmr.2015.11.003. Epub 2015 Dec 2.
2
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.
3
Improved Low-Rank Filtering of Magnetic Resonance Spectroscopic Imaging Data Corrupted by Noise and B₀ Field Inhomogeneity.
IEEE Trans Biomed Eng. 2016 Apr;63(4):841-9. doi: 10.1109/TBME.2015.2476499. Epub 2015 Sep 3.
4
Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.
Magn Reson Med. 2016 Feb;75(2):488-97. doi: 10.1002/mrm.25635. Epub 2015 Mar 11.
5
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Magn Reson Med. 2015 Mar;73(3):1289-99. doi: 10.1002/mrm.25193. Epub 2014 Mar 6.
6
A subspace approach to high-resolution spectroscopic imaging.
Magn Reson Med. 2014 Apr;71(4):1349-57. doi: 10.1002/mrm.25168. Epub 2014 Feb 4.
7
Data-driven MRSI spectral localization via low-rank component analysis.
IEEE Trans Med Imaging. 2013 Oct;32(10):1853-63. doi: 10.1109/TMI.2013.2266259. Epub 2013 Jun 4.
8
Blind compressive sensing dynamic MRI.
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
9
Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.
Magn Reson Med. 2014 Feb;71(2):469-76. doi: 10.1002/mrm.24693.
10
Spiral trajectory design: a flexible numerical algorithm and base analytical equations.
Magn Reson Med. 2014 Jan;71(1):278-85. doi: 10.1002/mrm.24675. Epub 2013 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验