Suppr超能文献

无载体复合液滴在开放式数字微流控平台中的轴对称和非轴对称振动。

Axisymmetric and Nonaxisymmetric Oscillations of Sessile Compound Droplets in an Open Digital Microfluidic Platform.

机构信息

Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science , Bangalore, Karnataka, India.

出版信息

Langmuir. 2017 Oct 17;33(41):11047-11058. doi: 10.1021/acs.langmuir.7b02042. Epub 2017 Oct 4.

Abstract

Manipulating droplets of biological fluids in an electrowetting on dielectric (EWOD)-based digital microfluidic platform is a significant challenge because of biofouling and surface contamination. This problem is often addressed by operating in an oil environment. We study an alternate configuration of sessile compound droplets having an aqueous core surrounded by a smaller oil shell. In contrast to the conventional EWOD platform, an open digital microfluidic platform enabled by the core-shell configuration will allow electrical, mechanical, or optical probes to get unrestricted access to the droplet, thus enabling highly flexible and dynamically reconfigurable lab-on-chip systems. Understanding droplet oscillations is essential as they are known to enhance mixing. To our knowledge, this is the first study of axisymmetric and nonaxisymmetric oscillations of compound droplets actuated using EWOD platforms. Mode shapes for both axisymmetric and nonaxisymmetric oscillations were studied and explained. Enhancement in the axisymmetric oscillation of the core by decreasing the shell volume was obtained experimentally and modeled theoretically. Smaller shell volumes reduce the damping losses, allowing the appearance of nonaxisymmetric modes over a larger range of operating parameters. The oscillation frequency regime for obtaining prominent nonaxisymmetric oscillations for different shell volumes was identified. Compound droplets provide a mechanism to reduce biofouling, sample contamination, and evaporation. We demonstrate axisymmetric and nonaxisymmetric oscillations of compound droplets with the biological core of red blood cells, providing crucial first steps for promoting applications such as rapid efficient assays, mixing of biological fluids, and fluidic photonics on hysteresis-free surfaces.

摘要

在基于电润湿的数字微流控平台上操纵生物流体液滴是一项重大挑战,因为会发生生物污垢和表面污染。这个问题通常通过在油环境中操作来解决。我们研究了一种具有水核和较小油壳的固着复合液滴的替代构型。与传统的 EWOD 平台不同,由核壳结构实现的开放式数字微流控平台将允许电气、机械或光学探头不受限制地进入液滴,从而实现高度灵活和动态可重构的芯片实验室系统。了解液滴的振荡是至关重要的,因为众所周知,液滴的振荡可以增强混合。据我们所知,这是首次使用 EWOD 平台研究轴对称和非轴对称复合液滴的振荡。研究并解释了轴对称和非轴对称振荡的模态形状。通过实验获得了通过 EWOD 平台驱动的核心轴对称振荡随壳体积减小而增强的结果,并从理论上进行了建模。较小的壳体积减少了阻尼损耗,允许在更大的操作参数范围内出现非轴对称模式。确定了获得不同壳体积下显著非轴对称振荡的振荡频率范围。复合液滴提供了一种减少生物污垢、样品污染和蒸发的机制。我们展示了具有生物红细胞核心的复合液滴的轴对称和非轴对称振荡,为促进快速高效分析、生物流体混合和无滞后表面的流体光子学等应用提供了关键的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验