Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands.
Curr Biol. 2017 Sep 25;27(18):2878-2886.e5. doi: 10.1016/j.cub.2017.08.032. Epub 2017 Sep 14.
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
细胞外基质(ECM)的局部重塑被认为可以稳定分裂沟并在细胞分裂过程中维持细胞形状[1-14]。这种重塑在空间和时间上与与生命王国相关的细胞骨架结构协调,例如细菌中的 FtsZ 环[15]、植物中的成膜体[16]以及真菌和动物中的肌动球蛋白环[17,18]。尽管已经广泛分析了细胞骨架结构,但 ECM 重塑的机制仍知之甚少。在出芽酵母酿酒酵母中,ECM 重塑是指由几丁质合成酶-II(Chs2)和几丁质合成酶-III(催化亚基 Chs3 和其激活剂 Chs4)分别催化的初级和次级隔膜的顺序形成[18,19]。令人惊讶的是,Chs2 和 Chs3 在细胞分裂开始时都被递送到分裂位点[6,20]。直到二级隔膜形成,Chs3 保持不活跃的原因仍不清楚。在这里,我们表明 Hof1 通过其 F-BAR 结构域与 Chs4 的 Sel1 样重复(SLR)结合,并在细胞分裂过程中抑制 Chs3 介导的几丁质合成。此外,Hof1 对于 Chs4 在分裂位点的快速积累和有效去除是必需的。这项研究揭示了 Hof1 控制细胞分裂过程中 Chs3 及时激活的机制,并定义了保守的 F-BAR 结构域和 SLR 的新的相互作用和功能,这些结构域和 SLR 通常因其结合膜脂质的能力[21,22]和支架蛋白复合物形成[23]而闻名。