Suppr超能文献

树突特性控制皮层锥体细胞动作电位的能量效率。

Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.

作者信息

Yi Guosheng, Wang Jiang, Wei Xile, Deng Bin

机构信息

School of Electrical and Information Engineering, Tianjin UniversityTianjin, China.

出版信息

Front Cell Neurosci. 2017 Sep 1;11:265. doi: 10.3389/fncel.2017.00265. eCollection 2017.

Abstract

Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na entry efficiency of somatic AP. Activating inward Ca current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca-activated outward K current in dendrites, however, decreases Na entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.

摘要

神经计算是通过将输入信号转化为动作电位(AP)序列来进行的,这在代谢上成本高昂且受大脑可用能量的限制。单个动作电位的代谢效率对细胞的计算能力有重要影响,而细胞的计算能力由其生物物理特性和形态决定。在这里,我们采用基于生物物理的双室模型来研究树突如何影响皮层锥体神经元中动作电位的能量效率。我们测量了动作电位期间的钠内流,并研究其如何有效地用于产生动作电位去极化。我们发现,增加树突面积的比例或两个室之间的耦合电导会降低体细胞动作电位的钠内流效率。激活树突中的内向钙电流会导致树突动作电位,从而提高动作电位效率。然而,激活树突中的钙激活外向钾电流会降低钠内流效率。我们证明,主动和被动树突通过改变钠内流与从体细胞流向树突的内部电流之间的重叠来发挥作用。我们解释了树突特性与动作电位效率之间的基本联系,这对于解释神经计算如何消耗代谢能量以及生物物理学和形态如何促成这种消耗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b65d/5585200/2356b126e92f/fncel-11-00265-g0001.jpg

相似文献

1
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Front Cell Neurosci. 2017 Sep 1;11:265. doi: 10.3389/fncel.2017.00265. eCollection 2017.
2
Metabolic Cost of Dendritic Ca Action Potentials in Layer 5 Pyramidal Neurons.
Front Neurosci. 2019 Nov 12;13:1221. doi: 10.3389/fnins.2019.01221. eCollection 2019.
6
Modulations of dendritic Ca spike with weak electric fields in layer 5 pyramidal cells.
Neural Netw. 2019 Feb;110:8-18. doi: 10.1016/j.neunet.2018.10.013. Epub 2018 Nov 7.
7
The stochastic nature of action potential backpropagation in apical tuft dendrites.
J Neurophysiol. 2017 Aug 1;118(2):1394-1414. doi: 10.1152/jn.00800.2016. Epub 2017 May 31.
8
Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons.
J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):1-20. doi: 10.1113/jphysiol.1995.sp020708.
9
The passive properties of dendrites modulate the propagation of slowly-varying firing rate in feedforward networks.
Neural Netw. 2022 Jun;150:377-391. doi: 10.1016/j.neunet.2022.03.001. Epub 2022 Mar 9.

引用本文的文献

2
Frequency-domain analysis of membrane polarization in two-compartment model neurons with weak alternating electric fields.
Cogn Neurodyn. 2024 Jun;18(3):1245-1264. doi: 10.1007/s11571-023-09980-w. Epub 2023 May 20.
5
Metabolic Cost of Dendritic Ca Action Potentials in Layer 5 Pyramidal Neurons.
Front Neurosci. 2019 Nov 12;13:1221. doi: 10.3389/fnins.2019.01221. eCollection 2019.
6
Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration.
Cell Mol Life Sci. 2020 Apr;77(8):1511-1530. doi: 10.1007/s00018-019-03336-6. Epub 2019 Oct 28.
8
Effects of acidosis on neuronal voltage-gated sodium channels: Nav1.1 and Nav1.3.
Channels (Austin). 2018;12(1):367-377. doi: 10.1080/19336950.2018.1539611.
9
Effects of Metabolic Energy on Synaptic Transmission and Dendritic Integration in Pyramidal Neurons.
Front Comput Neurosci. 2018 Sep 26;12:79. doi: 10.3389/fncom.2018.00079. eCollection 2018.
10
Inhibitory effects of cannabidiol on voltage-dependent sodium currents.
J Biol Chem. 2018 Oct 26;293(43):16546-16558. doi: 10.1074/jbc.RA118.004929. Epub 2018 Sep 14.

本文引用的文献

2
Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation.
Front Neurosci. 2016 Nov 17;10:534. doi: 10.3389/fnins.2016.00534. eCollection 2016.
3
Neuronal energy consumption: biophysics, efficiency and evolution.
Curr Opin Neurobiol. 2016 Dec;41:129-135. doi: 10.1016/j.conb.2016.09.004. Epub 2016 Sep 21.
4
Cable energy function of cortical axons.
Sci Rep. 2016 Jul 21;6:29686. doi: 10.1038/srep29686.
6
Dendritic integration: 60 years of progress.
Nat Neurosci. 2015 Dec;18(12):1713-21. doi: 10.1038/nn.4157. Epub 2015 Nov 25.
7
Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.
Front Comput Neurosci. 2015 May 27;9:62. doi: 10.3389/fncom.2015.00062. eCollection 2015.
8
Contribution of sublinear and supralinear dendritic integration to neuronal computations.
Front Cell Neurosci. 2015 Mar 24;9:67. doi: 10.3389/fncel.2015.00067. eCollection 2015.
9
Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields.
Biol Cybern. 2015 Jun;109(3):287-306. doi: 10.1007/s00422-014-0642-2. Epub 2015 Feb 5.
10
Non-signalling energy use in the brain.
J Physiol. 2015 Aug 15;593(16):3417-29. doi: 10.1113/jphysiol.2014.282517. Epub 2015 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验