Department of Biomedical Engineering, Duke University, Durham, NC, United States.
School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
Sci Rep. 2019 May 6;9(1):6940. doi: 10.1038/s41598-019-43460-8.
Thalamocortical (TC) relay cells exhibit different temporal patterns of activity, including tonic mode and burst mode, to transmit sensory information to the cortex. Our aim was to quantify the metabolic cost of different temporal patterns of neural activity across a range of average firing rates. We used a biophysically-realistic model of a TC relay neuron to simulate tonic and burst patterns of firing. We calculated the metabolic cost by converting the calculated ion fluxes into the demand for ATP to maintain homeostasis of intracellular ion concentrations. Most energy was expended on reversing Na entry during action potentials and pumping Ca out of the cell. Average firing rate determined the ATP cost across firing patterns by controlling the overall number of spikes. Varying intraburst frequency or spike number in each burst influenced the metabolic cost by altering the interactions of inward and outward currents on multiple timescales, but temporal pattern contributed substantially less to the metabolic demand of neural activity as compared to average firing rate. These predictions should be considered when interpreting findings of functional imaging studies that rely of estimates of neuronal metabolic demand, e.g., functional magnetic resonance imaging.
丘脑皮层 (TC) 中继细胞表现出不同的活动时间模式,包括紧张模式和爆发模式,以将感觉信息传递到皮层。我们的目的是量化不同时间模式的神经活动在一系列平均放电率下的代谢成本。我们使用 TC 中继神经元的生物物理现实模型来模拟紧张和爆发模式的放电。我们通过将计算出的离子通量转换为维持细胞内离子浓度内稳态所需的 ATP 需求来计算代谢成本。在动作电位期间,Na 进入细胞和 Ca 泵出细胞需要消耗大量能量。平均放电率通过控制总的尖峰数量来决定放电模式下的 ATP 成本。在每个爆发中的爆发内频率或尖峰数量的变化通过改变多个时间尺度上的内向和外向电流的相互作用来影响代谢成本,但与平均放电率相比,时间模式对神经活动的代谢需求的贡献要小得多。在解释依赖神经元代谢需求估计的功能成像研究结果时,应考虑这些预测,例如功能磁共振成像。