Suppr超能文献

亚线性和超线性树突整合对神经元计算的贡献。

Contribution of sublinear and supralinear dendritic integration to neuronal computations.

作者信息

Tran-Van-Minh Alexandra, Cazé Romain D, Abrahamsson Therése, Cathala Laurence, Gutkin Boris S, DiGregorio David A

机构信息

Unit of Dynamic Neuronal Imaging, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur Paris, France.

Group for Neural Theory, LNC INSERM U960, Institut d'Etude de la Cognition de l'Ecole normale supérieure, Ecole normale supérieure Paris, France ; Department of Bioengineering, Imperial College London London, UK.

出版信息

Front Cell Neurosci. 2015 Mar 24;9:67. doi: 10.3389/fncel.2015.00067. eCollection 2015.

Abstract

Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.

摘要

非线性树突整合被认为可增强神经元的计算能力。大多数研究聚焦于单个树突内成簇输入所产生的兴奋性突触反应的超线性总和如何导致神经元放电增强,从而实现诸如特征检测等简单计算。最近的报告表明,亚线性总和也是一种突出的树突操作,扩展了树突赋予的阈下输入 - 输出(sI/O)转换范围。与超线性操作一样,亚线性树突操作也增加了神经元计算的种类,但特征提取对于这些操作中的每一种都需要不同的突触连接策略。在本文中,我们将回顾描述树突操作的三个主要类别(线性、亚线性和超线性)的生物物理决定因素的实验和理论发现。然后,我们回顾基于布尔代数对简化神经元模型的分析,这为深入了解树突操作如何影响神经元计算提供了思路。我们强调神经元计算如何关键地依赖于树突特性(形态和电压门控通道表达)、放电阈值以及携带特定感觉特征的突触输入分布之间的相互作用。最后,我们描述全局(分散)和局部(成簇)整合策略如何允许实现类似类别的计算,一个例子是物体特征绑定问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e313/4371705/8ffaa44f37c8/fncel-09-00067-g0001.jpg

相似文献

1
Contribution of sublinear and supralinear dendritic integration to neuronal computations.
Front Cell Neurosci. 2015 Mar 24;9:67. doi: 10.3389/fncel.2015.00067. eCollection 2015.
2
Demonstration that sublinear dendrites enable linearly non-separable computations.
Sci Rep. 2024 Aug 6;14(1):18226. doi: 10.1038/s41598-024-65866-9.
3
Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.
Neuron. 2016 Aug 17;91(4):837-850. doi: 10.1016/j.neuron.2016.07.029.
4
A multilayer-multiplexer network processing scheme based on the dendritic integration in a single neuron.
AIMS Neurosci. 2022 Feb 28;9(1):76-113. doi: 10.3934/Neuroscience.2022006. eCollection 2022.
5
Synaptic integration in cortical inhibitory neuron dendrites.
Neuroscience. 2018 Jan 1;368:115-131. doi: 10.1016/j.neuroscience.2017.06.065. Epub 2017 Jul 27.
6
Spatial integration of dendrites in fast-spiking basket cells.
Front Neurosci. 2023 Apr 4;17:1132980. doi: 10.3389/fnins.2023.1132980. eCollection 2023.
7
Dendritic computations captured by an effective point neuron model.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15244-15252. doi: 10.1073/pnas.1904463116. Epub 2019 Jul 10.
9
Input summation by cultured pyramidal neurons is linear and position-independent.
J Neurosci. 1998 Jan 1;18(1):10-5. doi: 10.1523/JNEUROSCI.18-01-00010.1998.
10
Electric field effects on neuronal input-output relationship by regulating NMDA spikes.
Cogn Neurodyn. 2024 Feb;18(1):199-215. doi: 10.1007/s11571-022-09922-y. Epub 2023 Jan 4.

引用本文的文献

4
Excitatory synaptic integration mechanism of three types of granule cells in the dentate gyrus.
Cogn Neurodyn. 2025 Dec;19(1):40. doi: 10.1007/s11571-025-10226-0. Epub 2025 Feb 10.
5
Contributions of action potentials to scalp EEG: Theory and biophysical simulations.
PLoS Comput Biol. 2025 Feb 4;21(2):e1012794. doi: 10.1371/journal.pcbi.1012794. eCollection 2025 Feb.
6
Supralinear dendritic integration in murine dendrite-targeting interneurons.
Elife. 2025 Jan 31;13:RP100268. doi: 10.7554/eLife.100268.
7
The calcitron: A simple neuron model that implements many learning rules via the calcium control hypothesis.
PLoS Comput Biol. 2025 Jan 29;21(1):e1012754. doi: 10.1371/journal.pcbi.1012754. eCollection 2025 Jan.
8
Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3.
Nat Commun. 2025 Jan 28;16(1):1119. doi: 10.1038/s41467-025-56289-9.
9
Temporal integration on the dendrites of fast-spiking basket cells.
Sci Rep. 2024 Dec 5;14(1):30278. doi: 10.1038/s41598-024-81655-w.
10

本文引用的文献

1
Dendritic function in vivo.
Trends Neurosci. 2015 Jan;38(1):45-54. doi: 10.1016/j.tins.2014.11.002. Epub 2014 Nov 25.
2
Sensory-evoked LTP driven by dendritic plateau potentials in vivo.
Nature. 2014 Nov 6;515(7525):116-9. doi: 10.1038/nature13664. Epub 2014 Aug 31.
3
Bright and fast multicoloured voltage reporters via electrochromic FRET.
Nat Commun. 2014 Aug 13;5:4625. doi: 10.1038/ncomms5625.
4
All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins.
Nat Methods. 2014 Aug;11(8):825-33. doi: 10.1038/nmeth.3000. Epub 2014 Jun 22.
5
Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9277-82. doi: 10.1073/pnas.1408525111. Epub 2014 Jun 9.
6
The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons.
Front Cell Neurosci. 2014 May 13;8:127. doi: 10.3389/fncel.2014.00127. eCollection 2014.
7
Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves.
Neuron. 2014 May 21;82(4):908-24. doi: 10.1016/j.neuron.2014.04.004.
8
Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003590. doi: 10.1371/journal.pcbi.1003590. eCollection 2014 Apr.
9
High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor.
Nat Neurosci. 2014 Jun;17(6):884-9. doi: 10.1038/nn.3709. Epub 2014 Apr 22.
10
NMDA spikes enhance action potential generation during sensory input.
Nat Neurosci. 2014 Mar;17(3):383-90. doi: 10.1038/nn.3646. Epub 2014 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验