Suppr超能文献

一种用于提取分数动力学测量误差大小的高效算法。

An efficient algorithm for extracting the magnitude of the measurement error for fractional dynamics.

作者信息

Sikora G, Kepten E, Weron A, Balcerek M, Burnecki K

机构信息

Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.

出版信息

Phys Chem Chem Phys. 2017 Oct 11;19(39):26566-26581. doi: 10.1039/c7cp04464j.

Abstract

Modern live-imaging fluorescent microscopy techniques following the stochastic motion of labeled tracer particles, i.e. single particle tracking (SPT) experiments, have uncovered significant deviations from the laws of Brownian motion in a variety of biological systems. Accurately characterizing the anomalous diffusion for SPT experiments has become a central issue in biophysics. However, measurement errors raise difficulty in the analysis of single trajectories. In this paper, we introduce a novel surface calibration method based on a fractionally integrated moving average (FIMA) process as an effective tool for extracting both the magnitude of the measurement error and the anomalous exponent for autocorrelated processes of various origins. This method is developed using a toy model - fractional Brownian motion disturbed by independent Gaussian white noise - and is illustrated on both simulated and experimental biological data. We also compare this new method with the mean-squared displacement (MSD) technique, extended to capture the measurement noise in the toy model, which shows inferior results. The introduced procedure is expected to allow for more accurate analysis of fractional anomalous diffusion trajectories with measurement errors across different experimental fields and without the need for any calibration measurements.

摘要

现代实时成像荧光显微镜技术通过追踪标记示踪粒子的随机运动,即单粒子追踪(SPT)实验,发现在各种生物系统中存在显著偏离布朗运动定律的情况。准确表征SPT实验中的反常扩散已成为生物物理学中的核心问题。然而,测量误差给单轨迹分析带来了困难。在本文中,我们引入了一种基于分数积分移动平均(FIMA)过程的新型表面校准方法,作为提取各种来源自相关过程的测量误差大小和反常指数的有效工具。该方法是通过一个玩具模型——受独立高斯白噪声干扰的分数布朗运动——开发的,并在模拟和实验生物学数据上进行了说明。我们还将这种新方法与均方位移(MSD)技术进行了比较,后者在玩具模型中扩展以捕捉测量噪声,结果显示较差。预期所引入的程序将允许对不同实验领域中存在测量误差的分数反常扩散轨迹进行更准确的分析,且无需任何校准测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验