Physics Department, Technical University of Munich, Garching, Germany.
Biophys J. 2010 Apr 7;98(7):1364-72. doi: 10.1016/j.bpj.2009.12.4282.
An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.
越来越多的实验研究采用单粒子追踪技术来探测复杂系统中的物理环境。在这里,我们提出并讨论了我们认为是分析粒子轨迹时间序列的新方法,特别是对于亚扩散现象。我们讨论了平均最大偏移(MME)的统计特性,即测试粒子在时间 t 内所覆盖的最大距离。与传统方法专注于均方位移相比,我们表明 MME 分析在确定异常扩散指数方面表现更好。我们还证明了将正则矩与 MME 方法的矩相结合,可以提供额外的标准来确定潜在随机亚扩散过程的准确物理性质。我们使用实验数据以及来自不同模型的模拟时间序列对方法进行了测试,这些模型用于模拟正常和异常动力学,例如分形上的扩散、连续时间随机行走和分数布朗运动。