Suppr超能文献

调控II型非核糖体肽合成酶肽基载体蛋白中的蛋白质-蛋白质相互作用

Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins.

作者信息

Jaremko Matt J, Lee D John, Patel Ashay, Winslow Victoria, Opella Stanley J, McCammon J Andrew, Burkart Michael D

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

Department of Pharmacology, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0636, United States.

出版信息

Biochemistry. 2017 Oct 10;56(40):5269-5273. doi: 10.1021/acs.biochem.7b00884. Epub 2017 Oct 2.

Abstract

In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.

摘要

为了阐明并设计II型非核糖体肽合成酶中的相互作用,我们使用核磁共振(NMR)光谱、分子动力学和突变研究分析了必需肽基载体蛋白与腺苷化结构域之间的生物分子识别。除了它们各自的同源腺苷化结构域PigI、PltF和RedM外,还研究了三种肽基载体蛋白PigG、PltL和RedO的跨物种活性。在这三种肽基载体蛋白中,只有PigG表现出显著的跨途径活性。对全酶形式的PigG的新型NMR溶液结构的表征以及对全酶形式的PltL和全酶形式的PigG的分子动力学模拟揭示了这些载体蛋白在结构和动力学上的差异。NMR滴定实验表明,这些肽基载体蛋白的环1残基与腺苷化结构域相互作用时,其化学位移会发生扰动。这些实验揭示了蛋白质-蛋白质相互作用的关键区域。突变研究支持了环1在分子识别中的作用,因为对肽基载体蛋白该区域的突变显著调节了它们的活性。

相似文献

1
Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins.
Biochemistry. 2017 Oct 10;56(40):5269-5273. doi: 10.1021/acs.biochem.7b00884. Epub 2017 Oct 2.
2
Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.
3
Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.
J Biol Chem. 2017 Jun 16;292(24):10002-10013. doi: 10.1074/jbc.M116.766220. Epub 2017 Apr 28.
4
Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.
Biochemistry. 2012 Apr 17;51(15):3252-63. doi: 10.1021/bi300112e. Epub 2012 Apr 3.
6
Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases.
Structure. 2000 Apr 15;8(4):407-18. doi: 10.1016/s0969-2126(00)00120-9.
7
Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions.
Chembiochem. 2017 Apr 4;18(7):629-632. doi: 10.1002/cbic.201700030. Epub 2017 Feb 22.
9
Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.
ACS Chem Biol. 2016 Aug 19;11(8):2293-303. doi: 10.1021/acschembio.6b00332. Epub 2016 Jun 24.

引用本文的文献

1
Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways.
ACS Chem Biol. 2023 Sep 15;18(9):2014-2022. doi: 10.1021/acschembio.3c00238. Epub 2023 Sep 6.
2
The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis.
Methods Mol Biol. 2023;2670:3-16. doi: 10.1007/978-1-0716-3214-7_1.
3
Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.
4
Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains.
Synth Syst Biotechnol. 2022 Feb 16;7(2):677-688. doi: 10.1016/j.synbio.2022.02.006. eCollection 2022 Jun.
5
Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis.
Commun Biol. 2021 Mar 16;4(1):340. doi: 10.1038/s42003-021-01838-3.
6
Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis.
RSC Chem Biol. 2020 Apr 1;1(1):8-12. doi: 10.1039/c9cb00015a. Epub 2020 Mar 24.

本文引用的文献

1
Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.
Nature. 2016 Jan 14;529(7585):239-42. doi: 10.1038/nature16503.
2
Structures of two distinct conformations of holo-non-ribosomal peptide synthetases.
Nature. 2016 Jan 14;529(7585):235-8. doi: 10.1038/nature16163.
3
Structure and Substrate Sequestration in the Pyoluteorin Type II Peptidyl Carrier Protein PltL.
J Am Chem Soc. 2015 Sep 16;137(36):11546-9. doi: 10.1021/jacs.5b04525. Epub 2015 Sep 4.
6
Visualizing the chain-flipping mechanism in fatty-acid biosynthesis.
Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14456-61. doi: 10.1002/anie.201408576. Epub 2014 Oct 29.
8
9
Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.
Biochemistry. 2012 Apr 17;51(15):3252-63. doi: 10.1021/bi300112e. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验