Suppr超能文献

载体蛋白依赖性代谢途径的界面工程。

Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

出版信息

ACS Chem Biol. 2023 Sep 15;18(9):2014-2022. doi: 10.1021/acschembio.3c00238. Epub 2023 Sep 6.

Abstract

Carrier-protein-dependent metabolic pathways biosynthesize fatty acids, polyketides, and non-ribosomal peptides, producing metabolites with important pharmaceutical, environmental, and industrial properties. Recent findings demonstrate that these pathways rely on selective communication mechanisms involving protein-protein interactions (PPIs) that guide enzyme reactivity and timing. While rational design of these PPIs could enable pathway design and modification, this goal remains a challenge due to the complex nature of protein interfaces. Computational methods offer an encouraging avenue, though many score functions fail to predict experimental observables, leading to low success rates. Here, we improve upon the Rosetta score function, leveraging experimental data through iterative rounds of computational prediction and mutagenesis, to design a hybrid fatty acid-non-ribosomal peptide initiation pathway. By increasing the weight of the electrostatic score term, the computational protocol proved to be more predictive, requiring fewer rounds of iteration to identify mutants with high in vitro activity. This allowed efficient design of new PPIs between a non-ribosomal peptide synthetase adenylation domain, PltF, and a fatty acid synthase acyl carrier protein, AcpP, as validated by activity and structural studies. This method provides a promising platform for customized pathway design, establishing a standard for carrier-protein-dependent pathway engineering through PPI optimization.

摘要

载体蛋白依赖的代谢途径生物合成脂肪酸、聚酮化合物和非核糖体肽,产生具有重要药物、环境和工业特性的代谢物。最近的研究结果表明,这些途径依赖于选择性的通讯机制,包括涉及酶反应性和时间的蛋白质-蛋白质相互作用(PPIs)。虽然这些 PPIs 的合理设计可以实现途径的设计和修饰,但由于蛋白质界面的复杂性,这一目标仍然是一个挑战。计算方法提供了一个有希望的途径,尽管许多评分函数未能预测实验可观察到的结果,导致成功率较低。在这里,我们通过迭代的计算预测和突变分析,利用实验数据改进了 Rosetta 评分函数,设计了一种混合脂肪酸-非核糖体肽起始途径。通过增加静电评分项的权重,计算方案被证明更具预测性,需要更少的迭代次数来识别具有高体外活性的突变体。这使得在非核糖体肽合成酶腺苷酸化结构域 PltF 和脂肪酸合成酶酰基载体蛋白 AcpP 之间设计新的 PPI 变得高效,这通过活性和结构研究得到了验证。该方法为定制途径设计提供了一个有前途的平台,通过 PPI 优化为载体蛋白依赖的途径工程建立了标准。

相似文献

1
Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways.
ACS Chem Biol. 2023 Sep 15;18(9):2014-2022. doi: 10.1021/acschembio.3c00238. Epub 2023 Sep 6.
2
Trapping the dynamic acyl carrier protein in fatty acid biosynthesis.
Nature. 2014 Jan 16;505(7483):427-31. doi: 10.1038/nature12810. Epub 2013 Dec 22.
3
Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.
Mol Biosyst. 2015 Jan;11(1):38-59. doi: 10.1039/c4mb00443d. Epub 2014 Oct 31.
4
Control of Unsaturation in Fatty Acid Biosynthesis by FabA.
Biochemistry. 2022 Apr 5;61(7):608-615. doi: 10.1021/acs.biochem.2c00094. Epub 2022 Mar 8.
5
Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis.
Biochemistry. 2020 Sep 29;59(38):3626-3638. doi: 10.1021/acs.biochem.0c00605. Epub 2020 Sep 11.
6
Engineered Chimeras Unveil Swappable Modular Features of Fatty Acid and Polyketide Synthase Acyl Carrier Proteins.
Biochemistry. 2022 Feb 15;61(4):217-227. doi: 10.1021/acs.biochem.1c00798. Epub 2022 Jan 24.
8
De Novo Design and Implementation of a Tandem Acyl Carrier Protein Domain in a Type I Modular Polyketide Synthase.
ACS Chem Biol. 2018 Nov 16;13(11):3072-3077. doi: 10.1021/acschembio.8b00896. Epub 2018 Oct 24.
10
Active site labeling of fatty acid and polyketide acyl-carrier protein transacylases.
Org Biomol Chem. 2019 May 15;17(19):4720-4724. doi: 10.1039/c8ob03229g.

引用本文的文献

1
BnLPAT2 gene regulates oil accumulation in Brassica napus by modulating linoleic and linolenic acid levels in seeds.
PLoS One. 2025 Apr 16;20(4):e0321548. doi: 10.1371/journal.pone.0321548. eCollection 2025.

本文引用的文献

1
Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.
2
Decoding allosteric regulation by the acyl carrier protein.
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2025597118.
3
Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis.
Commun Biol. 2021 Mar 16;4(1):340. doi: 10.1038/s42003-021-01838-3.
4
POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules.
Bioinformatics. 2021 Sep 29;37(18):3041-3042. doi: 10.1093/bioinformatics/btab180.
5
Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis.
RSC Chem Biol. 2020 Apr 1;1(1):8-12. doi: 10.1039/c9cb00015a. Epub 2020 Mar 24.
6
Gating mechanism of elongating β-ketoacyl-ACP synthases.
Nat Commun. 2020 Apr 7;11(1):1727. doi: 10.1038/s41467-020-15455-x.
9
Molecular basis for interactions between an acyl carrier protein and a ketosynthase.
Nat Chem Biol. 2019 Jul;15(7):669-671. doi: 10.1038/s41589-019-0301-y. Epub 2019 Jun 17.
10
Structural and dynamical rationale for fatty acid unsaturation in .
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6775-6783. doi: 10.1073/pnas.1818686116. Epub 2019 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验