Suppr超能文献

破坏周围神经毡可增加锐波事件的频率。

Disruption of perineuronal nets increases the frequency of sharp wave ripple events.

机构信息

Jilin Women and Children's Health Hospital, Changchun, Jilin, China.

Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.

出版信息

Hippocampus. 2018 Jan;28(1):42-52. doi: 10.1002/hipo.22804. Epub 2017 Sep 26.

Abstract

Hippocampal sharp wave ripples (SWRs) represent irregularly occurring synchronous neuronal population events that are observed during phases of rest and slow wave sleep. SWR activity that follows learning involves sequential replay of training-associated neuronal assemblies and is critical for systems level memory consolidation. SWRs are initiated by CA2 or CA3 pyramidal cells (PCs) and require initial excitation of CA1 PCs as well as participation of parvalbumin (PV) expressing fast spiking (FS) inhibitory interneurons. These interneurons are relatively unique in that they represent the major neuronal cell type known to be surrounded by perineuronal nets (PNNs), lattice like structures composed of a hyaluronin backbone that surround the cell soma and proximal dendrites. Though the function of the PNN is not completely understood, previous studies suggest it may serve to localize glutamatergic input to synaptic contacts and thus influence the activity of ensheathed cells. Noting that FS PV interneurons impact the activity of PCs thought to initiate SWRs, and that their activity is critical to ripple expression, we examine the effects of PNN integrity on SWR activity in the hippocampus. Extracellular recordings from the stratum radiatum of horizontal murine hippocampal hemisections demonstrate SWRs that occur spontaneously in CA1. As compared with vehicle, pre-treatment (120 min) of paired hemislices with hyaluronidase, which cleaves the hyaluronin backbone of the PNN, decreases PNN integrity and increases SWR frequency. Pre-treatment with chondroitinase, which cleaves PNN side chains, also increases SWR frequency. Together, these data contribute to an emerging appreciation of extracellular matrix as a regulator of neuronal plasticity and suggest that one function of mature perineuronal nets could be to modulate the frequency of SWR events.

摘要

海马体尖锐波涟漪 (SWR) 代表不规则发生的同步神经元群体事件,在休息和慢波睡眠期间观察到。跟随学习的 SWR 活动涉及与训练相关的神经元集合的顺序回放,对系统水平的记忆巩固至关重要。SWR 由 CA2 或 CA3 锥体神经元 (PC) 引发,需要 CA1 PC 的初始兴奋以及表达囊泡蛋白 (PV) 的快速放电 (FS) 抑制性中间神经元的参与。这些中间神经元相对独特,它们代表了已知被周围神经毡 (PNN) 包围的主要神经元细胞类型,PNN 是由透明质酸骨干组成的晶格状结构,包围细胞体和近端树突。尽管 PNN 的功能尚未完全了解,但先前的研究表明,它可能起到将谷氨酸能输入定位到突触接触点的作用,从而影响被鞘包围的细胞的活性。注意到 FS PV 中间神经元影响被认为引发 SWR 的 PC 的活动,并且它们的活动对涟漪表达至关重要,我们检查了 PNN 完整性对海马体 SWR 活动的影响。从水平鼠海马体半切的放射层记录到的细胞外记录显示,CA1 中自发发生 SWR。与载体相比,用透明质酸酶预处理 (120 分钟) 对半切的配对海马体,该酶切割 PNN 的透明质酸骨干,降低 PNN 完整性并增加 SWR 频率。用软骨素酶预处理,该酶切割 PNN 侧链,也增加 SWR 频率。这些数据共同为细胞外基质作为神经元可塑性调节剂的新认识做出了贡献,并表明成熟周围神经毡的一个功能可能是调节 SWR 事件的频率。

相似文献

1
Disruption of perineuronal nets increases the frequency of sharp wave ripple events.
Hippocampus. 2018 Jan;28(1):42-52. doi: 10.1002/hipo.22804. Epub 2017 Sep 26.
3
Mechanisms of sharp wave initiation and ripple generation.
J Neurosci. 2014 Aug 20;34(34):11385-98. doi: 10.1523/JNEUROSCI.0867-14.2014.
4
Generation of Sharp Wave-Ripple Events by Disinhibition.
J Neurosci. 2020 Oct 7;40(41):7811-7836. doi: 10.1523/JNEUROSCI.2174-19.2020. Epub 2020 Sep 10.
7
Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics.
Neural Plast. 2018 Feb 4;2018:5735789. doi: 10.1155/2018/5735789. eCollection 2018.
8
Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves.
Neuron. 2014 May 21;82(4):908-24. doi: 10.1016/j.neuron.2014.04.004.
9
Chondroitinase and Antidepressants Promote Plasticity by Releasing TRKB from Dephosphorylating Control of PTPσ in Parvalbumin Neurons.
J Neurosci. 2021 Feb 3;41(5):972-980. doi: 10.1523/JNEUROSCI.2228-20.2020. Epub 2020 Dec 8.
10
Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia.
J Physiol. 2016 Aug 15;594(16):4615-30. doi: 10.1113/jphysiol.2014.282889. Epub 2015 Jan 2.

引用本文的文献

2
3
Haploinsufficiency of intraflagellar transport protein 172 causes autism-like behavioral phenotypes in mice through BDNF.
J Adv Res. 2025 Jul;73:681-695. doi: 10.1016/j.jare.2024.08.041. Epub 2024 Sep 10.
4
Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence.
Int J Mol Sci. 2024 Apr 11;25(8):4227. doi: 10.3390/ijms25084227.
6
Extracellular matrix abnormalities in the hippocampus of subjects with substance use disorder.
Transl Psychiatry. 2024 Feb 24;14(1):115. doi: 10.1038/s41398-024-02833-y.
7
From molecules to behavior: Implications for perineuronal net remodeling in learning and memory.
J Neurochem. 2024 Sep;168(9):1854-1876. doi: 10.1111/jnc.16036. Epub 2023 Dec 30.
8
Electroacupuncture promotes the repair of the damaged spinal cord in mice by mediating neurocan-perineuronal net.
CNS Neurosci Ther. 2024 Jan;30(1):e14468. doi: 10.1111/cns.14468. Epub 2023 Nov 10.
9
Longitudinal imaging of perineuronal nets.
Neurophotonics. 2023 Jan;10(1):015008. doi: 10.1117/1.NPh.10.1.015008. Epub 2023 Mar 24.
10
CCR5 deficiency normalizes TIMP levels, working memory, and gamma oscillation power in APOE4 targeted replacement mice.
Neurobiol Dis. 2023 Apr;179:106057. doi: 10.1016/j.nbd.2023.106057. Epub 2023 Mar 5.

本文引用的文献

1
Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican.
Neuron. 2017 Aug 2;95(3):639-655.e10. doi: 10.1016/j.neuron.2017.06.028. Epub 2017 Jul 14.
3
Extracellular matrix alterations in the ketamine model of schizophrenia.
Neuroscience. 2017 May 14;350:13-22. doi: 10.1016/j.neuroscience.2017.03.010. Epub 2017 Mar 18.
4
Increased metalloproteinase activity in the hippocampus following status epilepticus.
Epilepsy Res. 2017 May;132:50-58. doi: 10.1016/j.eplepsyres.2017.02.021. Epub 2017 Mar 1.
5
Extracellular Matrix Modulation Is Driven by Experience-Dependent Plasticity During Stroke Recovery.
Mol Neurobiol. 2018 Mar;55(3):2196-2213. doi: 10.1007/s12035-017-0461-2. Epub 2017 Mar 13.
6
Crosstalk between glia, extracellular matrix and neurons.
Brain Res Bull. 2018 Jan;136:101-108. doi: 10.1016/j.brainresbull.2017.03.003. Epub 2017 Mar 8.
8
Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity.
J Neurosci. 2017 Feb 1;37(5):1269-1283. doi: 10.1523/JNEUROSCI.2504-16.2016. Epub 2016 Dec 30.
10
A cortical-hippocampal-cortical loop of information processing during memory consolidation.
Nat Neurosci. 2017 Feb;20(2):251-259. doi: 10.1038/nn.4457. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验