Kohus Z, Káli S, Rovira-Esteban L, Schlingloff D, Papp O, Freund T F, Hájos N, Gulyás A I
Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
János Szentágothai, PhD Program of Semmelweis University, Budapest, Hungary.
J Physiol. 2016 Jul 1;594(13):3745-74. doi: 10.1113/JP272231. Epub 2016 May 5.
To understand how a network operates, its elements must be identified and characterized, and the interactions of the elements need to be studied in detail. In the present study, we describe quantitatively the connectivity of two classes of inhibitory neurons in the hippocampal CA3 area (parvalbumin-positive and cholecystokinin-positive interneurons), a key region for the generation of behaviourally relevant synchronous activity patterns. We describe how interactions among these inhibitory cells and their local excitatory target neurons evolve over the course of physiological and pathological activity patterns. The results of the present study enable the construction of precise neuronal network models that may help us understand how network dynamics is generated and how it can underlie information processing and pathological conditions in the brain. We show how inhibitory dynamics between parvalbumin-positive basket cells and pyramidal cells could contribute to sharp wave-ripple generation.
Different hippocampal activity patterns are determined primarily by the interaction of excitatory cells and different types of interneurons. To understand the mechanisms underlying the generation of different network dynamics, the properties of synaptic transmission need to be uncovered. Perisomatic inhibition is critical for the generation of sharp wave-ripples, gamma oscillations and pathological epileptic activities. Therefore, we aimed to quantitatively and systematically characterize the temporal properties of the synaptic transmission between perisomatic inhibitory neurons and pyramidal cells in the CA3 area of mouse hippocampal slices, using action potential patterns recorded during physiological and pathological network states. Parvalbumin-positive (PV+) and cholecystokinin-positive (CCK+) interneurons showed distinct intrinsic physiological features. Interneurons of the same type formed reciprocally connected subnetworks, whereas the connectivity between interneuron classes was sparse. The characteristics of unitary interactions depended on the identity of both synaptic partners, whereas the short-term plasticity of synaptic transmission depended mainly on the presynaptic cell type. PV+ interneurons showed frequency-dependent depression, whereas more complex dynamics characterized the output of CCK+ interneurons. We quantitatively captured the dynamics of transmission at these different types of connection with simple mathematical models, and describe in detail the response to physiological and pathological discharge patterns. Our data suggest that the temporal propeties of PV+ interneuron transmission may contribute to sharp wave-ripple generation. These findings support the view that intrinsic and synaptic features of PV+ cells make them ideally suited for the generation of physiological network oscillations, whereas CCK+ cells implement a more subtle, graded control in the hippocampus.
为了解网络如何运作,必须识别并表征其元素,还需详细研究这些元素之间的相互作用。在本研究中,我们定量描述了海马CA3区两类抑制性神经元(小白蛋白阳性和胆囊收缩素阳性中间神经元)的连接性,海马CA3区是产生与行为相关的同步活动模式的关键区域。我们描述了这些抑制性细胞与其局部兴奋性靶神经元之间的相互作用在生理和病理活动模式过程中是如何演变的。本研究结果有助于构建精确的神经元网络模型,这可能有助于我们理解网络动态是如何产生的,以及它如何成为大脑信息处理和病理状况的基础。我们展示了小白蛋白阳性篮状细胞与锥体细胞之间的抑制性动态如何有助于尖波涟漪的产生。
不同的海马活动模式主要由兴奋性细胞和不同类型的中间神经元之间的相互作用决定。为了理解不同网络动态产生的潜在机制,需要揭示突触传递的特性。胞体周围抑制对于尖波涟漪、伽马振荡和病理性癫痫活动的产生至关重要。因此,我们旨在利用在生理和病理网络状态下记录的动作电位模式,定量且系统地表征小鼠海马切片CA3区胞体周围抑制性神经元与锥体细胞之间突触传递的时间特性。小白蛋白阳性(PV+)和胆囊收缩素阳性(CCK+)中间神经元表现出不同的内在生理特征。同一类型的中间神经元形成相互连接的子网,而不同类型中间神经元之间的连接稀疏。单突触相互作用的特征取决于突触双方的身份,而突触传递的短期可塑性主要取决于突触前细胞类型。PV+中间神经元表现出频率依赖性抑制,而CCK+中间神经元的输出则具有更复杂的动态特性。我们用简单的数学模型定量捕捉了这些不同类型连接的传递动态,并详细描述了对生理和病理放电模式的反应。我们的数据表明,PV+中间神经元传递的时间特性可能有助于尖波涟漪的产生。这些发现支持了这样一种观点,即PV+细胞的内在和突触特征使其非常适合产生生理网络振荡,而CCK+细胞在海马中实施更微妙、分级的控制。