Suppr超能文献

被逐出庇护所:急性淋巴细胞白血病中针对细胞粘附分子的靶向治疗的发展

Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia.

作者信息

Barwe Sonali P, Quagliano Anthony, Gopalakrishnapillai Anilkumar

机构信息

Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.

Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.

出版信息

Semin Oncol. 2017 Apr;44(2):101-112. doi: 10.1053/j.seminoncol.2017.06.005. Epub 2017 Jul 11.

Abstract

Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.

摘要

急性淋巴细胞白血病(ALL)是一种影响骨髓造血功能的恶性血液疾病。虽然80%-90%被诊断为ALL的患者在治疗过程中的某个阶段会实现完全缓解,但ALL的复发率很高,5年总生存率为68%。初始缓解失败和高复发率可归因于内在的化学保护机制,这些机制使ALL细胞尽管接受了治疗仍能持续存在。这些机制至少部分是通过骨髓微环境中细胞粘附分子(CAMs)的作用介导的。本综述汇集了与保护白血病细胞免受化疗相关的CAMs。此类研究在ALL中有限。因此,还包括那些与不良预后相关或在ALL中过度表达且已被证明参与其他血液癌症化学保护的CAMs。这些分子可能在ALL中发挥类似作用,因为被确定为ALL化疗耐药因素的CAMs在其他血液恶性肿瘤中也有类似作用。我们综述了CAMs参与提供化疗保护时激活的信号传导机制。针对CAMs的靶向治疗的开发可能会改善ALL的治疗结果并提高总体治愈率。

相似文献

1
Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia.
Semin Oncol. 2017 Apr;44(2):101-112. doi: 10.1053/j.seminoncol.2017.06.005. Epub 2017 Jul 11.
2
Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.
Biochim Biophys Acta. 2016 Mar;1863(3):449-463. doi: 10.1016/j.bbamcr.2015.08.015. Epub 2015 Sep 1.
4
[Research Progress on Drug-resistance of Acute Lymphoblastic Leukemia--Review].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016 Feb;24(1):261-5. doi: 10.7534/j.issn.1009-2137.2016.01.050.
6
Targeting chemokines for acute lymphoblastic leukemia therapy.
J Hematol Oncol. 2021 Mar 20;14(1):48. doi: 10.1186/s13045-021-01060-y.
7
Notch signaling as a therapeutic target for acute lymphoblastic leukemia.
Expert Opin Ther Targets. 2018 Apr;22(4):331-342. doi: 10.1080/14728222.2018.1451840. Epub 2018 Mar 21.
8
Tetraspanins set the stage for bone marrow microenvironment-induced chemoprotection in hematologic malignancies.
Blood Adv. 2023 Aug 22;7(16):4403-4413. doi: 10.1182/bloodadvances.2023010476.
9
Microenvironmental cues for T-cell acute lymphoblastic leukemia development.
Immunol Rev. 2016 May;271(1):156-72. doi: 10.1111/imr.12402.
10
Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.
Leuk Res. 2015 Dec;39(12):1437-42. doi: 10.1016/j.leukres.2015.09.020. Epub 2015 Oct 1.

引用本文的文献

1
Epithelial-Mesenchymal Transition in Acute Leukemias.
Int J Mol Sci. 2024 Feb 11;25(4):2173. doi: 10.3390/ijms25042173.
2
Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199.
Acta Pharmacol Sin. 2024 Jan;45(1):180-192. doi: 10.1038/s41401-023-01142-2. Epub 2023 Aug 29.
3
Tetraspanins set the stage for bone marrow microenvironment-induced chemoprotection in hematologic malignancies.
Blood Adv. 2023 Aug 22;7(16):4403-4413. doi: 10.1182/bloodadvances.2023010476.
5
Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia.
Expert Rev Mol Med. 2023 May 3;25:e16. doi: 10.1017/erm.2023.13.
7
Acute lymphoblastic leukemia-derived exosome inhibits cytotoxicity of natural killer cells by TGF-β signaling pathway.
3 Biotech. 2021 Jul;11(7):313. doi: 10.1007/s13205-021-02817-5. Epub 2021 Jun 4.
8
CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia.
Blood Adv. 2020 Sep 22;4(18):4393-4405. doi: 10.1182/bloodadvances.2020001592.
9
DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas.
J Hematol Oncol. 2020 Jul 16;13(1):95. doi: 10.1186/s13045-020-00928-9.
10
Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer.
Front Oncol. 2020 Jun 24;10:992. doi: 10.3389/fonc.2020.00992. eCollection 2020.

本文引用的文献

1
CD47: a potential immunotherapy target for eliminating cancer cells.
Clin Transl Oncol. 2016 Nov;18(11):1051-1055. doi: 10.1007/s12094-016-1489-x. Epub 2016 Feb 1.
2
High expression of connective tissue growth factor accelerates dissemination of leukaemia.
Oncogene. 2016 Sep 1;35(35):4591-600. doi: 10.1038/onc.2015.525. Epub 2016 Jan 25.
3
Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.
J Biochem. 2016 May;159(5):481-90. doi: 10.1093/jb/mvv127. Epub 2015 Dec 18.
7
The application of CD73 in minimal residual disease monitoring using flow cytometry in B-cell acute lymphoblastic leukemia.
Leuk Lymphoma. 2016 May;57(5):1174-81. doi: 10.3109/10428194.2015.1070153. Epub 2015 Oct 5.
9
Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype.
Exp Hematol. 2016 Jan;44(1):50-9.e1-2. doi: 10.1016/j.exphem.2015.09.003. Epub 2015 Sep 25.
10
Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.
PLoS One. 2015 Sep 21;10(9):e0137345. doi: 10.1371/journal.pone.0137345. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验