Suppr超能文献

秀丽隐杆线虫铜绿假单胞菌感染模型中耐药谱、高危克隆和毒力之间的相互作用。

Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegans Pseudomonas aeruginosa Infection Model.

机构信息

Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, Majorca, Spain.

Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, Majorca, Spain

出版信息

Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01586-17. Print 2017 Dec.

Abstract

The increasing prevalence of nosocomial infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) is frequently linked to widespread international strains designated high-risk clones. In this work, we attempted to decipher the interplay between resistance profiles, high-risk clones, and virulence, testing a large ( = 140) collection of well-characterized isolates from different sources (bloodstream infections, nosocomial outbreaks, cystic fibrosis, and the environment) in a infection model. Consistent with previous data, we documented a clear inverse correlation between antimicrobial resistance and virulence in the model. Indeed, the lowest virulence was linked to XDR profiles, which were typically linked to defined high-risk clones. However, virulence varied broadly depending on the involved high-risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for ST175. The highest virulence of ST235 could be attributed to its type III secretion system (TTSS) genotype, which was found to be linked with higher virulence in our model. Other markers, such as motility or pigment production, were not essential for virulence in the model but seemed to be related with the higher values of the statistical normalized data. In contrast to ST235, the ST175 high-risk clone, which is widespread in Spain and France, seems to be associated with a particularly low virulence in the model. Moreover, the previously described G154R AmpR mutation, prevalent in ST175, was found to contribute to the reduced virulence, although it was not the only factor involved. Altogether, our results provide a major step forward for understanding the interplay between resistance profiles, high-risk clones, and virulence.

摘要

耐多药(MDR)或广泛耐药(XDR)的医院获得性感染的发病率不断上升,通常与广泛存在的国际高风险克隆株有关。在这项工作中,我们试图在感染模型中测试来自不同来源(血流感染、医院感染爆发、囊性纤维化和环境)的大量(= 140)特征良好的分离株,以破译耐药谱、高风险克隆株和毒力之间的相互作用。与之前的数据一致,我们在感染模型中记录了耐药性和毒力之间的明显负相关。事实上,XDR 图谱与明确的高风险克隆株相关,其毒力最低。然而,毒力因涉及的高风险克隆株而异;序列型 111(ST111)和 ST235 的毒力很高,但 ST175 的毒力非常低。ST235 的最高毒力可归因于其 III 型分泌系统(TTSS)基因型,在我们的感染模型中发现其与更高的毒力相关。其他标志物,如运动性或色素产生,在感染模型中对毒力不是必需的,但似乎与统计归一化数据的较高值有关。与 ST235 相反,广泛存在于西班牙和法国的 ST175 高风险克隆株似乎与感染模型中的低毒力相关。此外,在 ST175 中普遍存在的先前描述的 G154R AmpR 突变被发现有助于降低毒力,尽管它不是唯一涉及的因素。总的来说,我们的结果为理解耐药谱、高风险克隆株和毒力之间的相互作用提供了重要的一步。

相似文献

1
2
Pathogenic characteristics of Pseudomonas aeruginosa bacteraemia isolates in a high-endemicity setting for ST175 and ST235 high-risk clones.
Eur J Clin Microbiol Infect Dis. 2020 Apr;39(4):671-678. doi: 10.1007/s10096-019-03780-z. Epub 2019 Dec 10.
3
Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: Facing the perfect storm.
Int J Antimicrob Agents. 2018 Aug;52(2):172-179. doi: 10.1016/j.ijantimicag.2018.03.018. Epub 2018 Apr 3.
4
The increasing threat of Pseudomonas aeruginosa high-risk clones.
Drug Resist Updat. 2015 Jul-Aug;21-22:41-59. doi: 10.1016/j.drup.2015.08.002. Epub 2015 Aug 10.
5
Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update.
Int J Antimicrob Agents. 2020 Dec;56(6):106196. doi: 10.1016/j.ijantimicag.2020.106196. Epub 2020 Oct 9.
6
Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections.
Clin Infect Dis. 2015 Feb 15;60(4):539-48. doi: 10.1093/cid/ciu866. Epub 2014 Nov 6.
8
Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections.
J Infect Dis. 2017 Feb 15;215(suppl_1):S44-S51. doi: 10.1093/infdis/jiw299.
9
Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones.
Antimicrob Agents Chemother. 2012 Dec;56(12):6349-57. doi: 10.1128/AAC.01388-12. Epub 2012 Oct 8.
10
Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies.
Int J Antimicrob Agents. 2016 May;47(5):368-74. doi: 10.1016/j.ijantimicag.2016.02.010. Epub 2016 Mar 24.

引用本文的文献

2
The fitness connection of antibiotic resistance.
Front Microbiol. 2025 Apr 10;16:1556656. doi: 10.3389/fmicb.2025.1556656. eCollection 2025.
4
High-risk clones harboring β-lactamases: 2024 update.
Heliyon. 2024 Dec 26;11(1):e41540. doi: 10.1016/j.heliyon.2024.e41540. eCollection 2025 Jan 15.
5
Transcriptome Analysis Reveals the Mechanism of Y0-C10-HSL on Biofilm Formation and Motility of .
Pharmaceuticals (Basel). 2024 Dec 19;17(12):1719. doi: 10.3390/ph17121719.
7
Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence.
PLoS Pathog. 2024 Dec 2;20(12):e1012221. doi: 10.1371/journal.ppat.1012221. eCollection 2024 Dec.
8
Molecular Epidemiology of in Brazil: A Systematic Review and Meta-Analysis.
Antibiotics (Basel). 2024 Oct 17;13(10):983. doi: 10.3390/antibiotics13100983.
9

本文引用的文献

1
Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study.
Int J Antimicrob Agents. 2017 Sep;50(3):334-341. doi: 10.1016/j.ijantimicag.2017.03.034. Epub 2017 Jul 20.
2
Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections.
J Infect Dis. 2017 Feb 15;215(suppl_1):S44-S51. doi: 10.1093/infdis/jiw299.
3
Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7415-7423. doi: 10.1128/AAC.01720-16. Print 2016 Dec.
4
Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies.
Int J Antimicrob Agents. 2016 May;47(5):368-74. doi: 10.1016/j.ijantimicag.2016.02.010. Epub 2016 Mar 24.
5
The increasing threat of Pseudomonas aeruginosa high-risk clones.
Drug Resist Updat. 2015 Jul-Aug;21-22:41-59. doi: 10.1016/j.drup.2015.08.002. Epub 2015 Aug 10.
6
The problems of antibiotic resistance in cystic fibrosis and solutions.
Expert Rev Respir Med. 2015 Feb;9(1):73-88. doi: 10.1586/17476348.2015.995640. Epub 2014 Dec 26.
7
Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections.
Clin Infect Dis. 2015 Feb 15;60(4):539-48. doi: 10.1093/cid/ciu866. Epub 2014 Nov 6.
8
Establishment of a novel whole animal HTS technology platform for melioidosis drug discovery.
Comb Chem High Throughput Screen. 2014;17(9):790-803. doi: 10.2174/1386207317666141019195031.
9
Worming our way to novel drug discovery with the Caenorhabditis elegans proteostasis network, stress response and insulin-signaling pathways.
Expert Opin Drug Discov. 2014 Sep;9(9):1021-32. doi: 10.1517/17460441.2014.930125. Epub 2014 Jul 5.
10
Biological markers of Pseudomonas aeruginosa epidemic high-risk clones.
Antimicrob Agents Chemother. 2013 Nov;57(11):5527-35. doi: 10.1128/AAC.01481-13. Epub 2013 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验