Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10542-10547. doi: 10.1073/pnas.1708161114. Epub 2017 Sep 18.
Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.
骨骼转移是晚期乳腺癌患者死亡的主要原因,这取决于肿瘤细胞与矿化骨细胞外基质的相互作用。骨矿物质主要由羟基磷灰石 (HA) 纳米晶体组成,其理化性质因解剖位置、年龄和病理而异。然而,目前尚不清楚转移性乳腺癌通常靶向的骨骼区域是否具有独特的 HA 材料特性。在这里,我们结合高分辨率 X 射线散射分析、大面积拉曼成像、背散射电子显微镜、组织病理学和微计算机断层扫描,对相关骨骼部位的晚期乳腺癌小鼠模型中的 HA 进行了表征。近侧胫骨干骺端是我们研究中的常见转移部位;我们发现,在无疾病的骨骼中,与骨干中的 HA 纳米晶体相比,该骨骼区域的 HA 纳米晶体更小且取向性更差。我们还观察到,溶骨性骨转移导致残余骺板小梁骨中 HA 纳米晶体尺寸减小和完善度降低。有趣的是,在局部乳腺癌模型中,骺板的 HA 纳米晶体也比无疾病对照组中的相应骨骼更小且更不完善。总之,这些结果表明,容易发生肿瘤细胞扩散的骨骼部位含有不成熟的 HA(即更小、更不完善且取向性更差的晶体),并且原发性肿瘤甚至在继发性肿瘤形成之前就可以进一步增加 HA 的不成熟度,模拟胫骨转移过程中存在的改变。重现这些时空动态的工程肿瘤模型将允许评估所检测到的变化对乳腺癌骨转移进展和治疗的功能相关性。