Suppr超能文献

C3 植物光合作用电子传递链调控的计算机分析。

In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.

机构信息

Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands

Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands.

出版信息

Plant Physiol. 2018 Feb;176(2):1247-1261. doi: 10.1104/pp.17.00779. Epub 2017 Sep 18.

Abstract

We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO, high light intensity, or combined high CO and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport.

摘要

我们提出了一个新的 C3 物种光合作用电子传递链反应的模拟模型。我们表明,包括最近关于类囊体质子动力势调节、ATP/NADPH 平衡机制(环式和非环式交替电子传递)以及 Rubisco 活性调节的新见解,会导致一些新的行为出现,这些行为可能会影响不同动态环境条件下光合作用的运作和调节。该模型使用文献中的实验结果进行了参数化,重点是拟南芥(Arabidopsis)。从多个来源构建了一个数据集,包括在不同光强和 CO 下的稳态和动态气体交换、叶绿素荧光和吸收光谱的测量,以测试模型在不同实验条件下的预测。模拟表明,环式和非环式交替电子传递之间存在强烈的相互作用,并且需要有过剩的交替电子传递能力,以确保适当的氧化还原状态和腔室 pH。此外,该模型预测,在特定条件下,在光强快速增加后,质体醌还原铁氧还蛋白是可能的。进一步的分析还表明,ATP 合成与质子动力势之间的关系受到 ATP、ADP 和无机磷酸盐浓度的高度调节,这有助于在代谢受到限制的情况下,如低 CO、高光强或高 CO 和高光强的组合,增加非光化学猝灭和质子动力势。该模型可以作为未来光合作用电子传递调节研究的一个计算机模拟平台。

相似文献

1
In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.
Plant Physiol. 2018 Feb;176(2):1247-1261. doi: 10.1104/pp.17.00779. Epub 2017 Sep 18.
2
Computer modeling of electron and proton transport in chloroplasts.
Biosystems. 2014 Jul;121:1-21. doi: 10.1016/j.biosystems.2014.04.007. Epub 2014 May 14.
3
Regulating the proton budget of higher plant photosynthesis.
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9709-13. doi: 10.1073/pnas.0503952102. Epub 2005 Jun 22.
5
Photosynthetic Linear Electron Flow Drives CO Assimilation in Maize Leaves.
Int J Mol Sci. 2021 May 5;22(9):4894. doi: 10.3390/ijms22094894.
8
High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant Physiol. 2023 May 2;192(1):370-386. doi: 10.1093/plphys/kiad084.

引用本文的文献

2
From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement.
Photosynth Res. 2024 Aug;161(1-2):21-49. doi: 10.1007/s11120-024-01083-9. Epub 2024 Apr 15.
4
Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll fluorescence.
Plant Environ Interact. 2022 Mar 31;3(2):41-59. doi: 10.1002/pei3.10073. eCollection 2022 Apr.
5
Cyclic electron flow around photosystem II in silico: How it works and functions in vivo.
Photosynth Res. 2023 Apr;156(1):129-145. doi: 10.1007/s11120-023-00997-0. Epub 2023 Feb 8.
9
Potential metabolic mechanisms for inhibited chloroplast nitrogen assimilation under high CO2.
Plant Physiol. 2021 Nov 3;187(3):1812-1833. doi: 10.1093/plphys/kiab345.
10
Bridging the gap between Kok-type and kinetic models of photosynthetic electron transport within Photosystem II.
Photosynth Res. 2022 Jan;151(1):83-102. doi: 10.1007/s11120-021-00868-6. Epub 2021 Aug 16.

本文引用的文献

3
A mathematical model of non-photochemical quenching to study short-term light memory in plants.
Biochim Biophys Acta. 2016 Dec;1857(12):1860-1869. doi: 10.1016/j.bbabio.2016.09.003. Epub 2016 Sep 12.
5
The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana.
Plant Sci. 2015 Oct;239:238-49. doi: 10.1016/j.plantsci.2015.07.013. Epub 2015 Jul 26.
6
Modelling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves.
Plant Sci. 2015 Sep;238:297-311. doi: 10.1016/j.plantsci.2015.06.022. Epub 2015 Jul 17.
7
Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids.
Biochim Biophys Acta. 2016 Jan;1857(1):1-6. doi: 10.1016/j.bbabio.2015.07.012. Epub 2015 Jul 31.
8
Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots.
Photosynth Res. 2016 Jan;127(1):69-76. doi: 10.1007/s11120-015-0104-2. Epub 2015 Mar 12.
10
Computer modeling of electron and proton transport in chloroplasts.
Biosystems. 2014 Jul;121:1-21. doi: 10.1016/j.biosystems.2014.04.007. Epub 2014 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验