Kaiser Elias, Kromdijk Johannes, Harbinson Jeremy, Heuvelink Ep, Marcelis Leo F M
Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, USA.
Ann Bot. 2017 Jan;119(1):191-205. doi: 10.1093/aob/mcw226. Epub 2016 Dec 26.
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking.
We tested how photosynthetic induction after dark-light transitions was affected by CO partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum).
Rates of photosynthetic induction strongly increased with CO partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD may be explained by low leaf internal CO partial pressure at the beginning of induction.
The environmental factors CO partial pressure, temperature and VPD had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %.
植物依靠光合作用生长。在自然界中,温度、湿度、二氧化碳分压以及光照的光谱和强度等因素常常波动。虽然光照强度的影响最为显著且已得到详细研究,但对于其与其他因素相互作用的理解仍很欠缺。
我们测试了暗 - 光转换后的光合诱导如何受到二氧化碳分压(20、40、80帕)、叶片温度(15.5、22.8、30.5摄氏度)、叶 - 气蒸汽压差(VPD;0.5、0.8、1.6、2.3千帕)以及番茄叶片(番茄)中蓝光辐照度(0 - 20%)的影响。
光合诱导速率随二氧化碳分压显著增加,这是由于表观羧化酶活化速率增加以及扩散限制降低。高叶片温度产生略高的诱导速率,并提高了内在水分利用效率和扩散限制。高VPD减缓了诱导速率和表观羧化酶活化,并且(在2.3千帕时)诱导了气孔的阻尼振荡。蓝光辐照度没有影响。在VPD升高时表观羧化酶活化较慢可能是由于诱导开始时叶片内部二氧化碳分压较低所致。
环境因素二氧化碳分压、温度和VPD对光合诱导速率以及潜在的扩散、羧化和电子传递过程有显著影响。此外,在环境二氧化碳分压下(跨温度和湿度),使羧化酶活化速率最大化最多可使光合作用增加6 - 8%,而使气孔开放速率最大化最多可使光合作用增加1 - 3%。