Suppr超能文献

连接全局Csr和σ依赖性细胞包膜应激反应系统的信号通路

Circuitry Linking the Global Csr- and σ-Dependent Cell Envelope Stress Response Systems.

作者信息

Yakhnin Helen, Aichele Robert, Ades Sarah E, Romeo Tony, Babitzke Paul

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.

Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Bacteriol. 2017 Oct 31;199(23). doi: 10.1128/JB.00484-17. Print 2017 Dec 1.

Abstract

CsrA of is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors, including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are small RNAs (sRNAs) that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σ) is the extracytoplasmic stress response sigma factor of Previous RNA sequencing (RNA-seq) studies identified mRNA as a CsrA target. Here, we explored the regulation of by CsrA and found that CsrA represses translation. Gel mobility shift, footprint, and toeprint studies identified three CsrA binding sites in the leader transcript, one of which overlaps the Shine-Dalgarno (SD) sequence, while another overlaps the translation initiation codon. Coupled transcription-translation experiments showed that CsrA represses translation by binding to these sites. We further demonstrate that σ indirectly activates the transcription of and , leading to increased sequestration of CsrA, such that repression of by CsrA is reduced. We propose that the Csr system fine-tunes the σ-dependent cell envelope stress response. We also identified a 51-amino-acid coding sequence whose stop codon overlaps the start codon and demonstrate that is translationally coupled with this upstream open reading frame (ORF51). The loss of coupling reduces translation by more than 50%. Identification of a translationally coupled ORF upstream of suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we named ORF51 , resulting in an operon arrangement of CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σ)-mediated general stress response. We show that CsrA represses the translation of , encoding the extracytoplasmic stress response sigma factor, and that σ indirectly activates the transcription of and , resulting in reciprocal regulation of these two global regulatory systems. These findings suggest that extracytoplasmic stress leads to derepression of translation by CsrA, and CsrA-mediated repression helps reset RpoE abundance to prestress levels once envelope damage is repaired. The discovery of an ORF, , translationally coupled with adds further complexity to translational control of .

摘要

[细菌名称]的CsrA是一种RNA结合蛋白,可全局调节多种细胞过程和行为,包括碳代谢、运动性、生物膜形成和严谨反应。CsrB和CsrC是小RNA(sRNA),它们螯合CsrA,从而阻止CsrA与mRNA相互作用。RpoE(σ[具体细菌中的相关σ因子名称])是[细菌名称]的胞质外应激反应σ因子。先前的RNA测序(RNA-seq)研究将[基因名称]mRNA鉴定为CsrA的靶标。在此,我们探究了CsrA对[基因名称]的调控,发现CsrA抑制[基因名称]的翻译。凝胶迁移率变动、足迹和脚印实验在[基因名称]前导转录本中鉴定出三个CsrA结合位点,其中一个与[基因名称]的Shine-Dalgarno(SD)序列重叠,另一个与[基因名称]的翻译起始密码子重叠。耦合的转录-翻译实验表明,CsrA通过与这些位点结合来抑制[基因名称]的翻译。我们进一步证明,σ间接激活[基因名称]和[基因名称]的转录,导致CsrA的螯合增加,从而降低CsrA对[基因名称]的抑制作用。我们提出,Csr系统对σ依赖性细胞包膜应激反应进行微调。我们还鉴定出一个51个氨基酸的编码序列,其终止密码子与[基因名称]的起始密码子重叠,并证明[基因名称]与这个上游开放阅读框(ORF51)发生翻译偶联。偶联的丧失使[基因名称]的翻译减少超过50%。在[基因名称]上游鉴定出一个翻译偶联的ORF表明,这个先前未注释的蛋白可能参与细胞包膜应激反应。按照现有命名法,我们将ORF51命名为[具体名称],从而形成了[基因名称]、[基因名称]的操纵子排列。CsrA在转录后抑制细菌应激反应所需的基因,包括严谨反应、分解代谢物阻遏和RpoS(σ[具体细菌中的相关σ因子名称])介导的一般应激反应。我们表明,CsrA抑制编码胞质外应激反应σ因子的[基因名称]的翻译,而σ间接激活[基因名称]和[基因名称]的转录,导致这两个全局调节系统的相互调控。这些发现表明,胞质外应激导致CsrA对[基因名称]翻译的去抑制,并且一旦包膜损伤得到修复,CsrA介导的抑制作用有助于将RpoE丰度重置为应激前水平。与[基因名称]翻译偶联的ORF的发现为[基因名称]的翻译控制增加了进一步的复杂性。

相似文献

1
Circuitry Linking the Global Csr- and σ-Dependent Cell Envelope Stress Response Systems.
J Bacteriol. 2017 Oct 31;199(23). doi: 10.1128/JB.00484-17. Print 2017 Dec 1.
3
Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.
J Bacteriol. 2016 Oct 7;198(21):3000-3015. doi: 10.1128/JB.00454-16. Print 2016 Nov 1.
4
CsrA-Mediated Translational Activation of Expression in Escherichia coli.
mBio. 2020 Sep 15;11(5):e00849-20. doi: 10.1128/mBio.00849-20.

引用本文的文献

1
Intracellular formate modulates a motility-invasion switch in Salmonella Typhimurium.
PLoS Pathog. 2025 Sep 4;21(9):e1013453. doi: 10.1371/journal.ppat.1013453. eCollection 2025 Sep.
2
PIRT-Seq: a high-resolution whole-genome assay to identify protein-coding genes.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf774.
3
Thermodynamic modeling of RsmA - mRNA interactions capture novel direct binding across the transcriptome.
Front Mol Biosci. 2025 Feb 20;12:1493891. doi: 10.3389/fmolb.2025.1493891. eCollection 2025.
5
CsrA selectively modulates sRNA-mRNA regulator outcomes.
Front Mol Biosci. 2023 Nov 21;10:1249528. doi: 10.3389/fmolb.2023.1249528. eCollection 2023.
6
CsrA Shows Selective Regulation of sRNA-mRNA Networks.
bioRxiv. 2023 Mar 29:2023.03.29.534774. doi: 10.1101/2023.03.29.534774.
7
Regulation of phosphate starvation-specific responses in .
Microbiology (Reading). 2023 Mar;169(3). doi: 10.1099/mic.0.001312.
9
Dual role of CsrA in regulating the hemolytic activity of O157:H7.
Virulence. 2022 Dec;13(1):859-874. doi: 10.1080/21505594.2022.2073023.
10
The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in .
Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001185.

本文引用的文献

5
Integrative FourD omics approach profiles the target network of the carbon storage regulatory system.
Nucleic Acids Res. 2017 Feb 28;45(4):1673-1686. doi: 10.1093/nar/gkx048.
7
Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.
J Bacteriol. 2016 Oct 7;198(21):3000-3015. doi: 10.1128/JB.00454-16. Print 2016 Nov 1.
8
Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins.
Nucleic Acids Res. 2016 Sep 19;44(16):7896-910. doi: 10.1093/nar/gkw484. Epub 2016 May 27.
9
Pseudomonas aeruginosa AlgU Contributes to Posttranscriptional Activity by Increasing rsmA Expression in a mucA22 Strain.
J Bacteriol. 2016 Jun 13;198(13):1812-1826. doi: 10.1128/JB.00133-16. Print 2016 Jul 1.
10
Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo.
EMBO J. 2016 May 2;35(9):991-1011. doi: 10.15252/embj.201593360. Epub 2016 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验