Suppr超能文献

肌动蛋白单体中的逻辑门。

Logical gates in actin monomer.

机构信息

University of the West of England, Bristol, BS16 1QY, United Kingdom.

出版信息

Sci Rep. 2017 Sep 18;7(1):11755. doi: 10.1038/s41598-017-11333-7.

Abstract

We evaluate information processing capacity of a single actin molecule by calculating distributions of logical gates implemented by the molecule via propagating patterns of excitation. We represent a filamentous actin molecule as an excitable automaton network (F-actin automaton). where every atom updates its state depending on states of atoms its connected to with chemical bonds (hard neighbours) and atoms being in physical proximity to the atom (soft neighbours). A resting atom excites if a sum of its excited hard neighbours and a weighted sum of its soft neighbours belong to some specified interval. We demonstrate that F-actin automata implement OR, AND, XOR and AND-NOT gates via interacting patterns of excitation. Gate AND is the most common gate and gate XOR is the rarest. Using the architectures of gates discovered we implement one bit half-adder and controlled-not circuits in the F-actin automata. Speed and space values of the F-actin molecular computers are discussed.

摘要

我们通过计算通过传播兴奋模式实现的逻辑门的分布来评估单个肌动蛋白分子的信息处理能力。我们将丝状肌动蛋白分子表示为可兴奋自动机网络(F-肌动蛋白自动机)。其中,每个原子根据与其化学键(硬邻居)连接的原子的状态以及与原子物理接近的原子的状态更新其状态。如果其兴奋的硬邻居的总和和其软邻居的加权总和属于某个指定的间隔,则处于静止状态的原子会兴奋。我们证明 F-肌动蛋白自动机通过兴奋模式的相互作用来实现 OR、AND、XOR 和 AND-NOT 门。门 AND 是最常见的门,门 XOR 是最罕见的门。使用发现的门的结构,我们在 F-肌动蛋白自动机中实现了一位半加法器和受控非门电路。讨论了 F-肌动蛋白分子计算机的速度和空间值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f3d/5603530/f11f84847fef/41598_2017_11333_Fig1_HTML.jpg

相似文献

1
Logical gates in actin monomer.
Sci Rep. 2017 Sep 18;7(1):11755. doi: 10.1038/s41598-017-11333-7.
2
On discovering functions in actin filament automata.
R Soc Open Sci. 2019 Jan 23;6(1):181198. doi: 10.1098/rsos.181198. eCollection 2019 Jan.
3
Computing in Verotoxin.
Chemphyschem. 2017 Jul 5;18(13):1822-1830. doi: 10.1002/cphc.201700477. Epub 2017 Jun 13.
4
Scaling Up Multi-bit DNA Full Adder Circuits with Minimal Strand Displacement Reactions.
J Am Chem Soc. 2022 Jun 1;144(21):9479-9488. doi: 10.1021/jacs.2c03258. Epub 2022 May 22.
5
Patterns of conductivity in excitable automata with updatable intervals of excitations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056105. doi: 10.1103/PhysRevE.86.056105. Epub 2012 Nov 7.
6
Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032811. doi: 10.1103/PhysRevE.92.032811. Epub 2015 Sep 28.
7
On architectures of circuits implemented in simulated Belousov-Zhabotinsky droplets.
Biosystems. 2012 Jul;109(1):72-7. doi: 10.1016/j.biosystems.2011.12.007. Epub 2012 Jan 12.
8
Connectable DNA logic gates: OR and XOR logics.
Chem Asian J. 2012 Mar 5;7(3):534-40. doi: 10.1002/asia.201100664. Epub 2011 Dec 23.
9
Construction of a fuzzy and Boolean logic gates based on DNA.
Small. 2015 Apr 17;11(15):1811-7. doi: 10.1002/smll.201402755. Epub 2015 Jan 7.
10
DNA based arithmetic function: a half adder based on DNA strand displacement.
Nanoscale. 2016 Feb 14;8(6):3775-84. doi: 10.1039/c5nr08497k.

引用本文的文献

1
Logical circuits in colloids.
R Soc Open Sci. 2024 May 22;11(5):231939. doi: 10.1098/rsos.231939. eCollection 2024 May.
2
Thermosensory Spiking Activity of Proteinoid Microspheres Cross-Linked by Actin Filaments.
Langmuir. 2024 Jun 18;40(24):12649-12670. doi: 10.1021/acs.langmuir.4c01107. Epub 2024 Jun 5.
3
Large and stable: actin aster networks formed entropic forces.
Front Chem. 2022 Aug 25;10:899478. doi: 10.3389/fchem.2022.899478. eCollection 2022.
4
Actin droplet machine.
R Soc Open Sci. 2019 Dec 4;6(12):191135. doi: 10.1098/rsos.191135. eCollection 2019 Dec.
5
Computing on actin bundles network.
Sci Rep. 2019 Nov 4;9(1):15887. doi: 10.1038/s41598-019-51354-y.
6
On discovering functions in actin filament automata.
R Soc Open Sci. 2019 Jan 23;6(1):181198. doi: 10.1098/rsos.181198. eCollection 2019 Jan.

本文引用的文献

1
Computing in Verotoxin.
Chemphyschem. 2017 Jul 5;18(13):1822-1830. doi: 10.1002/cphc.201700477. Epub 2017 Jun 13.
2
Attosecond physics at the nanoscale.
Rep Prog Phys. 2017 May;80(5):054401. doi: 10.1088/1361-6633/aa574e. Epub 2017 Jan 6.
3
The nature of the globular- to fibrous-actin transition.
Nature. 2009 Jan 22;457(7228):441-5. doi: 10.1038/nature07685.
4
Single-cycle nonlinear optics.
Science. 2008 Jun 20;320(5883):1614-7. doi: 10.1126/science.1157846.
5
Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy.
Nat Rev Neurosci. 2008 May;9(5):344-56. doi: 10.1038/nrn2373.
6
The actin cytoskeleton: integrating form and function at the synapse.
Annu Rev Neurosci. 2005;28:25-55. doi: 10.1146/annurev.neuro.28.061604.135757.
7
The early history of the biochemistry of muscle contraction.
J Gen Physiol. 2004 Jun;123(6):631-41. doi: 10.1085/jgp.200409091.
8
Ionic wave propagation along actin filaments.
Biophys J. 2004 Apr;86(4):1890-903. doi: 10.1016/S0006-3495(04)74255-1.
9
Attosecond control of electronic processes by intense light fields.
Nature. 2003 Feb 6;421(6923):611-5. doi: 10.1038/nature01414.
10
A role of actin filament in synaptic transmission and long-term potentiation.
J Neurosci. 1999 Jun 1;19(11):4314-24. doi: 10.1523/JNEUROSCI.19-11-04314.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验