Eberle Jan Philipp, Rapp Alexander, Krufczik Matthias, Eryilmaz Marion, Gunkel Manuel, Erfle Holger, Hausmann Michael
High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany.
Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
Methods Mol Biol. 2017;1663:1-13. doi: 10.1007/978-1-4939-7265-4_1.
Fluorescence microscopy is an essential tool for imaging tagged biological structures. Due to the wave nature of light, the resolution of a conventional fluorescence microscope is limited laterally to about 200 nm and axially to about 600 nm, which is often referred to as the Abbe limit. This hampers the observation of important biological structures and dynamics in the nano-scaled range ~10 nm to ~100 nm. Consequentially, various methods have been developed circumventing this limit of resolution. Super-resolution microscopy comprises several of those methods employing physical and/or chemical properties, such as optical/instrumental modifications and specific labeling of samples. In this article, we will give a brief insight into a variety of selected optical microscopy methods reaching super-resolution beyond the Abbe limit. We will survey three different concepts in connection to biological applications in radiation research without making a claim to be complete.
荧光显微镜是用于对标记生物结构进行成像的重要工具。由于光的波动性质,传统荧光显微镜的分辨率在横向被限制在约200纳米,在轴向被限制在约600纳米,这通常被称为阿贝极限。这妨碍了对纳米尺度范围(约10纳米至约100纳米)内重要生物结构和动态的观察。因此,人们开发了各种方法来规避这一分辨率限制。超分辨率显微镜包括其中几种利用物理和/或化学性质的方法,例如光学/仪器改进以及样品的特异性标记。在本文中,我们将简要介绍各种选定的光学显微镜方法,这些方法实现了超越阿贝极限的超分辨率。我们将探讨与辐射研究中的生物应用相关的三种不同概念,但并不声称全面涵盖。