Weidner Jonas, Neitzel Charlotte, Gote Martin, Deck Jeanette, Küntzelmann Kim, Pilarczyk Götz, Falk Martin, Hausmann Michael
Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic.
Comput Struct Biotechnol J. 2023 Mar 9;21:2018-2034. doi: 10.1016/j.csbj.2023.03.009. eCollection 2023.
The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.
细胞作为一个由许多成分组成的系统,受物理和化学规律支配,驱动着对这些系统空间组织有影响的分子功能,反之亦然。由于结构与功能之间的关系不仅在生物学中几乎是普遍规律,因此需要适当的方法来参数化生物分子及其网络的结构与功能之间的关系、它们所参与过程的机制以及这些过程的调控机制。我们在此关注的单分子定位显微镜(SMLM)为分子组织的定量参数化提供了显著优势:它提供了荧光标记生物分子的坐标矩阵,可直接进行先进的数学分析程序,而无需费力且有时会产生误导的图像处理。在此,我们提出用于SMLM点模式综合定量计算机数据分析的数学工具,包括Ripley距离频率分析、持久同调分析、持久“成像”、主成分分析和共定位分析。使用模拟不同、可能存在且在解释上很重要情况的人工数据集来解释这些方法的应用。展示了对真实复杂生物SMLM数据的说明性分析,以强调所提出算法的适用性。本手稿展示了对染色质(重新)组织对基因组功能影响进行量化的特征和参数的提取,为在纳米尺度研究染色质结构提供了一种新方法。然而,所提出的算法能够适应分析基本上任何分子组织,例如膜受体或细胞质中的蛋白质运输,这提供了广泛的使用灵活性。