Miller Nimrod, Shi Han, Zelikovich Aaron S, Ma Yong-Chao
Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
Hum Mol Genet. 2016 Aug 15;25(16):3395-3406. doi: 10.1093/hmg/ddw262. Epub 2016 Aug 3.
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease.
脊髓性肌萎缩症(SMA)是婴儿死亡的主要遗传原因,主要影响包括运动神经元、骨骼肌和心脏在内的高代谢组织。尽管已确定SMA的遗传原因,但组织特异性易损性的潜在机制尚不清楚。为了研究这些机制,我们对SMA小鼠模型中的脊髓运动神经元转录组进行了深度测序分析,意外地发现许多与线粒体生物能量学相关的基因发生了变化。重要的是,线粒体活性的功能测量显示SMA小鼠运动神经元的基础和最大线粒体呼吸降低。使用对还原氧化敏感的绿色荧光蛋白(GFP)和专门靶向线粒体的荧光传感器,我们发现受SMA影响的运动神经元中氧化应激水平升高,线粒体膜电位受损。此外,在SMA疾病状态下,线粒体的移动性受损,逆行运输减少,但对顺行运输没有影响。我们还发现SMA小鼠的初级运动神经元中线粒体网络的碎片化显著增加,线粒体密度没有变化。对SMA小鼠脊髓的电子显微镜研究显示,受该疾病影响的运动神经元中线粒体碎片化、水肿和同心层状包涵体。有趣的是,SMA小鼠模型中的这些功能和结构缺陷发生在疾病的症状前期,提示其在引发SMA中起作用。总之,我们的研究结果揭示了线粒体缺陷在SMA发病机制中的关键作用,并为改善该疾病的组织健康提出了一个新的靶点。