Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 15914, Iran.
J Med Syst. 2017 Sep 19;41(11):174. doi: 10.1007/s10916-017-0821-5.
Precise segmentation of magnetic resonance image (MRI) seems challenging because of the complex structure of the brain, non-uniform field in images, and noise. As a result, decision-making is associated with uncertainty. Fuzzy based approaches have been developed to overcome this problem, though most of them use fuzzy type 1 method, and sometimes contain a pre-processing step. This paper "modified type 2 fuzzy system" (MT2FS) declares a state-of-the-art method to segment MRI images using interval fuzzy type-2. Furthermore, Genetic algorithm has been employed to specify the best values for mean and variance of upper and lower membership functions. This strategy will determine discrimination boundaries for different brain tissues to be less independent from the training set. Finally, the result of fuzzy rules is extracted by using Dempster-Shafer rule combination method. Simulation results demonstrate a satisfactory output on both simulated and real MRI images in comparison with previously conducted research works without the need for a pre-processing stage.
磁共振图像(MRI)的精确分割具有挑战性,因为大脑结构复杂、图像中的非均匀场和噪声。因此,决策存在不确定性。已经开发了基于模糊的方法来克服这个问题,尽管大多数方法都使用模糊类型 1 方法,并且有时包含预处理步骤。本文提出了一种“改进型 2 型模糊系统”(MT2FS),该系统使用区间模糊型 2 来分割 MRI 图像,这是一种最先进的方法。此外,遗传算法被用于指定上下隶属函数均值和方差的最佳值。这种策略将确定不同脑组织的判别边界,使其与训练集的依赖性降低。最后,通过使用 Dempster-Shafer 规则组合方法提取模糊规则的结果。与之前没有预处理阶段的研究工作相比,模拟和真实 MRI 图像的仿真结果都显示出令人满意的输出。
J Xray Sci Technol. 2019
IEEE Trans Inf Technol Biomed. 2012-5
Nan Fang Yi Ke Da Xue Xue Bao. 2008-4
Technol Health Care. 2015
Comput Math Methods Med. 2014-3-9
Comput Med Imaging Graph. 2008-12
Comput Methods Programs Biomed. 2011-11-15
IEEE Trans Med Imaging. 2016-3-4
J Med Signals Sens. 2015
Comput Intell Neurosci. 2007
IEEE Trans Biomed Eng. 2007-1
IEEE Trans Med Imaging. 2002-3
IEEE Trans Med Imaging. 2001-1
Neuroimage. 2000-6