文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于元启发式调谐的区间型 2 型模糊系统,用于减少脑 MRI 图像中的分割不确定性。

A Metaheuristically Tuned Interval Type 2 Fuzzy System to Reduce Segmentation Uncertainty in Brain MRI Images.

机构信息

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 15914, Iran.

出版信息

J Med Syst. 2017 Sep 19;41(11):174. doi: 10.1007/s10916-017-0821-5.


DOI:10.1007/s10916-017-0821-5
PMID:28929417
Abstract

Precise segmentation of magnetic resonance image (MRI) seems challenging because of the complex structure of the brain, non-uniform field in images, and noise. As a result, decision-making is associated with uncertainty. Fuzzy based approaches have been developed to overcome this problem, though most of them use fuzzy type 1 method, and sometimes contain a pre-processing step. This paper "modified type 2 fuzzy system" (MT2FS) declares a state-of-the-art method to segment MRI images using interval fuzzy type-2. Furthermore, Genetic algorithm has been employed to specify the best values for mean and variance of upper and lower membership functions. This strategy will determine discrimination boundaries for different brain tissues to be less independent from the training set. Finally, the result of fuzzy rules is extracted by using Dempster-Shafer rule combination method. Simulation results demonstrate a satisfactory output on both simulated and real MRI images in comparison with previously conducted research works without the need for a pre-processing stage.

摘要

磁共振图像(MRI)的精确分割具有挑战性,因为大脑结构复杂、图像中的非均匀场和噪声。因此,决策存在不确定性。已经开发了基于模糊的方法来克服这个问题,尽管大多数方法都使用模糊类型 1 方法,并且有时包含预处理步骤。本文提出了一种“改进型 2 型模糊系统”(MT2FS),该系统使用区间模糊型 2 来分割 MRI 图像,这是一种最先进的方法。此外,遗传算法被用于指定上下隶属函数均值和方差的最佳值。这种策略将确定不同脑组织的判别边界,使其与训练集的依赖性降低。最后,通过使用 Dempster-Shafer 规则组合方法提取模糊规则的结果。与之前没有预处理阶段的研究工作相比,模拟和真实 MRI 图像的仿真结果都显示出令人满意的输出。

相似文献

[1]
A Metaheuristically Tuned Interval Type 2 Fuzzy System to Reduce Segmentation Uncertainty in Brain MRI Images.

J Med Syst. 2017-9-19

[2]
A spatial fuzzy C-means algorithm for segmentation of brain MRI images.

J Xray Sci Technol. 2019

[3]
A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis.

Artif Intell Med. 2016-5

[4]
Fuzzy local Gaussian mixture model for brain MR image segmentation.

IEEE Trans Inf Technol Biomed. 2012-5

[5]
[A new algorithm for magnetic resonance image segmentation based on fuzzy kerne1 clustering].

Nan Fang Yi Ke Da Xue Xue Bao. 2008-4

[6]
Brain tissue segmentation using fuzzy clustering techniques.

Technol Health Care. 2015

[7]
A new multistage medical segmentation method based on superpixel and fuzzy clustering.

Comput Math Methods Med. 2014-3-9

[8]
Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images.

J Med Syst. 2017-1

[9]
A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints.

Comput Med Imaging Graph. 2008-12

[10]
Generalized rough fuzzy c-means algorithm for brain MR image segmentation.

Comput Methods Programs Biomed. 2011-11-15

本文引用的文献

[1]
A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis.

Artif Intell Med. 2016-5

[2]
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

IEEE Trans Med Imaging. 2016-3-4

[3]
A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images.

J Med Signals Sens. 2015

[4]
Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

Magn Reson Imaging. 2014-9

[5]
FMRI brain-computer interface: a tool for neuroscientific research and treatment.

Comput Intell Neurosci. 2007

[6]
Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

IEEE Trans Biomed Eng. 2007-1

[7]
A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data.

IEEE Trans Med Imaging. 2002-3

[8]
Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.

IEEE Trans Med Imaging. 2001-1

[9]
Voxel-based morphometry--the methods.

Neuroimage. 2000-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索