Suppr超能文献

基于傅里叶变换的秀丽隐杆线虫活体衍射分析

Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

作者信息

Magnes Jenny, Hastings Harold M, Raley-Susman Kathleen M, Alivisatos Clara, Warner Adam, Hulsey-Vincent Miranda

机构信息

Physics and Astronomy Department, Vassar College;

Division of Science, Mathematics and Computing, Bard College at Simon's Rock.

出版信息

J Vis Exp. 2017 Sep 13(127):56154. doi: 10.3791/56154.

Abstract

This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

摘要

本手稿描述了如何使用时间远场衍射特征对线虫进行分类。将单个秀丽隐杆线虫悬浮在光学比色皿内的水柱中。使用前表面镜将632 nm连续波氦氖激光引导通过比色皿。光通过比色皿后传播至少20 - 30 cm的显著距离可确保获得有用的远场(夫琅禾费)衍射图案。当线虫在激光束内游动时,衍射图案会实时变化。光电二极管放置在衍射图案的偏心位置。实时观察来自光电二极管的电压信号,并使用数字示波器进行记录。对139条野生型和108条“翻滚型”秀丽隐杆线虫重复此过程。野生型线虫在溶液中呈现快速振荡模式。“翻滚型”线虫在角质层的一个关键成分上发生了突变,这会干扰其平滑运动。舍弃不饱和且无活动的时间间隔。将每个平均值除以其最大值以比较相对强度是可行的。对每条线虫的信号进行傅里叶变换,从而得出每条线虫的频率模式。对每种类型线虫的信号进行平均。野生型和“翻滚型”秀丽隐杆线虫的平均傅里叶光谱明显不同,这表明可以使用傅里叶分析区分两种不同线虫菌株的动态线虫形状。每种线虫菌株的傅里叶光谱与使用对应于运动时刻的两种不同二元线虫形状的近似模型相匹配。实际线虫和建模线虫的平均频率分布包络证实了模型与数据相匹配。由于每种微生物都将具有其独特的傅里叶光谱,因此该方法可作为许多微观物种傅里叶分析的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce3/5752230/cba97a77664d/jove-127-56154-2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验