Suppr超能文献

基于经验模态分解分析秀丽隐杆线虫的运动步态印记。

Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition.

作者信息

Lin Li-Chun, Chuang Han-Sheng

机构信息

Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.

Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.

出版信息

PLoS One. 2017 Jul 24;12(7):e0181469. doi: 10.1371/journal.pone.0181469. eCollection 2017.

Abstract

The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly adopted approach for strain recognition and examination of phenotypic defects. Gait is also a visible behavioral expression of worms under external stimuli. This study developed an adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the biological cues behind intricate motion. The method was used to classify the strains of worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the locomotory pattern was created from the worm of interest. The body curvature of the worm was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correlations between the predefined database and measured worm was then obtained by dividing each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance score was estimated after k-means clustering. Simulated data that use sinusoidal waves were generated to assess the feasibility of the algorithm. Results suggested that temporal frequency is the major factor in the process. In practice, five worm strains, including wild-type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were investigated. The overall classification accuracy of the gaitprint analyses of all the strains reached nearly 89%. The method can also be extended to classify some motor neuron-related locomotory defects of C. elegans in the same fashion.

摘要

对微小游动者秀丽隐杆线虫的运动步态分析是一种常用于品系识别和表型缺陷检测的方法。步态也是线虫在外部刺激下可见的行为表现。本研究开发了一种基于经验模态分解(EMD)的自适应数据分析方法,以揭示复杂运动背后的生物学线索。该方法用于根据线虫的步态印记(即运动的表型特征)对品系进行分类。首先,从感兴趣的线虫创建运动模式规范。线虫的身体曲率被分解为四个本征模态函数(IMF)。然后通过将每个IMF分为头部、身体中部和尾部三个部分,获得一个显示预定义数据库与被测线虫之间相关性的雷达图。经过k均值聚类后估计出一个综合相似度得分。生成了使用正弦波的模拟数据来评估该算法的可行性。结果表明,时间频率是该过程中的主要因素。在实际应用中,研究了五个线虫品系,包括野生型N2、TJ356(zIs356)、CL2070(dvIs70)、CB0061(dpy-5)和CL2120(dvIs14)。所有品系的步态印记分析的总体分类准确率达到近89%。该方法还可以扩展,以同样的方式对线虫的一些与运动神经元相关的运动缺陷进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f41f/5524362/0306c492ee7c/pone.0181469.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验