Suppr超能文献

用于制备可调带隙无针孔甲基铵铅卤化物钙钛矿薄膜的低压气相辅助溶液法

Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films.

作者信息

Sutter-Fella Carolin M, Li Yanbo, Cefarin Nicola, Buckley Aya, Ngo Quynh Phuong, Javey Ali, Sharp Ian D, Toma Francesca M

机构信息

Joint Center for Artificial Photosynthesis, Chemical Sciences Division, Lawrence Berkeley National Laboratory; Electrical Engineering and Computer Sciences, University of California, Berkeley; Materials Science Division, Lawrence Berkeley National Laboratory.

Joint Center for Artificial Photosynthesis, Chemical Sciences Division, Lawrence Berkeley National Laboratory; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China.

出版信息

J Vis Exp. 2017 Sep 8(127):55404. doi: 10.3791/55404.

Abstract

Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH3NH3I) and methylammonium bromide (CH3NH3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH3NH3PbX3 with X = I, Br, Cl and their mixture) films with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH3NH3PbI3-xBrx by exposing the substrate to vapors of a mixture of CH3NH3I and CH3NH3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH3NH3PbI3-xBrx with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ Eg ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH3NH3PbI3-xClx. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.

摘要

有机铅卤化物钙钛矿最近在薄膜光伏和光电子学的潜在应用中引起了极大的兴趣。在此,我们展示了一种通过低压气相辅助溶液法(LP-VASP)制备这种材料的方案,该方法在平面异质结钙钛矿太阳能电池中产生了约19%的功率转换效率。首先,我们报道了由甲胺和相应的氢卤酸(HI或HBr)合成碘化甲铵(CH3NH3I)和溴化甲铵(CH3NH3Br)。然后,我们描述了用LP-VASP制备无针孔、连续的甲铵铅卤化物钙钛矿(CH3NH3PbX3,其中X = I、Br、Cl及其混合物)薄膜的过程。这个过程基于两个步骤:i)将卤化铅前驱体的均匀层旋涂到基板上,ii)通过在减压和120°C下将基板暴露于CH3NH3I和CH3NH3Br混合物的蒸汽中,将该层转化为CH3NH3PbI3-xBrx。通过甲铵卤化物蒸汽缓慢扩散到卤化铅前驱体中,我们实现了连续、无针孔钙钛矿薄膜的缓慢且可控生长。LP-VASP允许合成进入0≤x≤3的CH3NH3PbI3-xBrx中的全卤化物组成空间。根据气相组成,带隙可以在1.6 eV≤Eg≤2.3 eV之间调节。此外,通过改变卤化铅前驱体和气相的组成,我们还可以获得CH3NH3PbI3-xClx。通过LP-VASP获得的薄膜具有可重复性,经X射线衍射测量证实为相纯,并且显示出高光致发光量子产率。该过程不需要使用手套箱。

相似文献

2
Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.
J Phys Chem Lett. 2015 Feb 5;6(3):493-9. doi: 10.1021/jz502720a. Epub 2015 Jan 22.
3
Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.
ChemSusChem. 2016 Sep 22;9(18):2620-2627. doi: 10.1002/cssc.201600674. Epub 2016 Aug 17.
4
Mixed-Organic-Cation (FA)(MA)PbI Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process.
ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2449-2458. doi: 10.1021/acsami.6b13410. Epub 2017 Jan 12.
5
Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.
Nano Lett. 2015 Aug 12;15(8):5630-4. doi: 10.1021/acs.nanolett.5b02402. Epub 2015 Aug 3.
6
Crystalline Nature of Colloids in Methylammonium Lead Halide Perovskite Precursor Inks Revealed by Cryo-Electron Microscopy.
J Phys Chem Lett. 2020 Aug 6;11(15):5980-5986. doi: 10.1021/acs.jpclett.0c01975. Epub 2020 Jul 14.
7
Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells.
Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9705-9. doi: 10.1002/anie.201504379. Epub 2015 Jun 26.
8
Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.
J Phys Chem Lett. 2014 Aug 7;5(15):2501-5. doi: 10.1021/jz501332v. Epub 2014 Jul 10.
9
Rational Strategies for Efficient Perovskite Solar Cells.
Acc Chem Res. 2016 Mar 15;49(3):562-72. doi: 10.1021/acs.accounts.5b00444. Epub 2016 Mar 7.

本文引用的文献

2
Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997. doi: 10.1039/c5ee03874j. Epub 2016 Mar 29.
3
Efficient luminescent solar cells based on tailored mixed-cation perovskites.
Sci Adv. 2016 Jan 1;2(1):e1501170. doi: 10.1126/sciadv.1501170. eCollection 2016 Jan.
4
High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.
Nano Lett. 2016 Jan 13;16(1):800-6. doi: 10.1021/acs.nanolett.5b04884. Epub 2015 Dec 28.
5
Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).
J Phys Chem Lett. 2016 Jan 7;7(1):161-6. doi: 10.1021/acs.jpclett.5b02686. Epub 2015 Dec 24.
6
Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.
Science. 2015 Nov 20;350(6263):944-8. doi: 10.1126/science.aad1015. Epub 2015 Oct 29.
7
Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance.
J Phys Chem Lett. 2014 Mar 20;5(6):1035-9. doi: 10.1021/jz500279b. Epub 2014 Mar 11.
8
High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors.
J Phys Chem Lett. 2014 Apr 17;5(8):1421-6. doi: 10.1021/jz5005285. Epub 2014 Apr 2.
9
High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.
J Phys Chem Lett. 2015 Jul 16;6(14):2676-81. doi: 10.1021/acs.jpclett.5b01108. Epub 2015 Jun 25.
10
Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.
J Phys Chem Lett. 2015 Feb 5;6(3):493-9. doi: 10.1021/jz502720a. Epub 2015 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验