Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
Nat Commun. 2016 Aug 18;7:12446. doi: 10.1038/ncomms12446.
Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO2 thin film as the electron transport layer. TiO2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiency of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO2 layer leads to enhanced long-term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.
制备高效率和高稳定性的平面异质结钙钛矿太阳能电池仍然具有挑战性。本文通过使用具有本征缺陷的 TiO2 薄膜作为电子传输层,展示了这一目标的实现。在缺氧环境中,通过电子束蒸发沉积具有本征缺陷的 TiO2 薄膜。TiO2 层中的深能级空穴陷阱有助于获得高光电导增益和降低光催化活性。TiO2 电子传输层的高光电导率可提高所制备的平面器件的效率。获得的平面器件的最大功率转换效率为 19.0%,平均 PCE 为 17.5%。此外,TiO2 层的光催化活性降低可提高平面器件的长期稳定性。在最大功率点附近的连续运行下,在 100 小时内,效率超过 15.4%。