Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380.
Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
Plant Physiol. 2017 Nov;175(3):1455-1468. doi: 10.1104/pp.17.00879. Epub 2017 Sep 20.
To ensure food security, maize () is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding nonvolatile antibiotic derivative β-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 () on chromosome 9 as a β-costic acid pathway candidate gene. Numerous closely examined β-costic acid-deficient inbred lines were found to harbor pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length was cloned, heterologously expressed in , and demonstrated to cyclize farnesyl diphosphate, yielding β-selinene as the dominant product. Consistent with microbial defense pathways, transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional alleles displayed β-costic acid levels over 100 μg g fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (). In vivo disease resistance assays, using and near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.
为了确保粮食安全,玉米()是研究抗逆相关有益性状的模式作物。与叶片生化物质不同,限制病害传播的根防御机制仍未得到充分描述。为了更好地了解田间的地下防御,我们进行了根代谢组学分析,意外地发现了高水平的倍半萜挥发物β-榄香醇和相应的非挥发性抗生素衍生物β-蛇床酸。利用双亲群体、全基因组关联研究和近等基因系进行基于代谢物的数量性状基因座作图,鉴定了 9 号染色体上的萜烯合酶 21()是β-蛇床酸途径的候选基因。许多经过仔细检查的β-蛇床酸缺陷近交系被发现含有缺乏法呢基二磷酸环化酶活性所需保守基序的假基因。为了进行生化验证,克隆了全长 ,并在 中异源表达,证明其可以环化法呢基二磷酸,生成β-榄香醇作为主要产物。与微生物防御途径一致,真菌诱导后 转录本强烈积累。含有功能 等位基因的受挑战田间根显示β-蛇床酸水平超过 100 μg g 鲜重,大大超过了抑制五种不同真菌病原体和根结线虫幼虫生长所需的体外浓度()。利用 和 近等基因系进行的体内抗病性测定进一步支持了源自 selinene 的代谢物的内源性抗真菌作用。参与非挥发性抗生素的生物合成, 作为一个有用的基因,存在于针对优化生物胁迫抗性的种质改良计划中。