White Thomas E, Rojas Bibiana, Mappes Johanna, Rautiala Petri, Kemp Darrell J
Department of Biological Science, Macquarie University, North Ryde 2109, Australia
Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland.
Biol Lett. 2017 Sep;13(9). doi: 10.1098/rsbl.2017.0375.
Much of what we know about human colour perception has come from psychophysical studies conducted in tightly-controlled laboratory settings. An enduring challenge, however, lies in extrapolating this knowledge to the noisy conditions that characterize our actual visual experience. Here we combine statistical models of visual perception with empirical data to explore how chromatic (hue/saturation) and achromatic (luminant) information underpins the detection and classification of stimuli in a complex forest environment. The data best support a simple linear model of stimulus detection as an additive function of both luminance and saturation contrast. The strength of each predictor is modest yet consistent across gross variation in viewing conditions, which accords with expectation based upon general primate psychophysics. Our findings implicate simple visual cues in the guidance of perception amidst natural noise, and highlight the potential for informing human vision via a fusion between psychophysical modelling and real-world behaviour.
我们对人类颜色感知的许多了解都来自于在严格控制的实验室环境中进行的心理物理学研究。然而,一个长期存在的挑战在于,将这些知识外推到表征我们实际视觉体验的嘈杂环境中。在这里,我们将视觉感知的统计模型与经验数据相结合,以探索色彩(色调/饱和度)和非色彩(亮度)信息如何在复杂的森林环境中支持刺激的检测和分类。数据最有力地支持了一种简单的线性刺激检测模型,该模型是亮度和饱和度对比度的加性函数。每个预测因子的强度适中,但在不同的观看条件下总体变化中保持一致,这与基于一般灵长类动物心理物理学的预期相符。我们的研究结果表明,在自然噪声中,简单的视觉线索对感知具有引导作用,并强调了通过心理物理学建模与现实世界行为相结合来为人类视觉提供信息的潜力。