Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
Nat Commun. 2017 Sep 20;8(1):615. doi: 10.1038/s41467-017-00710-5.
Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. The ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.The properties of complex oxides such as strontium titanate are strongly affected by the presence and distribution of oxygen vacancies. Here, the authors demonstrate that a scanning probe microscope tip can be used to manipulate vacancies by the flexoelectric effect.
氧空位,特别是其分布,与氧化物的电磁特性直接相关,这种特性与新兴功能有关,对器件应用具有重要意义。在这里,我们使用同质外延钛酸锶薄膜,通过扫描探针显微镜针尖的机械力,展示了对氧空位分布的可控操纵。通过结合 Kelvin 探针力显微镜成像和相场模拟,我们表明氧空位可以在由应力梯度引起的去极化场下移动。当对其进行调整时,这种纳米级的挠曲电效应可以实现对空间调制的控制。在运动过程中,扫描探针针尖可以确定地重新配置空位的空间分布。按需局部操纵氧空位的能力为探索介观量子现象和工程多功能氧化物器件提供了工具。钛酸锶等复杂氧化物的性质受到氧空位的存在和分布的强烈影响。在这里,作者证明扫描探针显微镜针尖可以通过挠曲电效应来操纵空位。