Suppr超能文献

氮空位中心的退相干控制

Decoherence Control of Nitrogen-Vacancy Centers.

作者信息

Lei Chao, Peng Shijie, Ju Chenyong, Yung Man-Hong, Du Jiangfeng

机构信息

Hefei National Laboratory for Physics Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China.

Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

出版信息

Sci Rep. 2017 Sep 20;7(1):11937. doi: 10.1038/s41598-017-12280-z.

Abstract

Quantum mechanical systems lose coherence through interacting with external environments-a process known as decoherence. Although decoherence is detrimental for most of the tasks in quantum information processing, a substantial degree of decoherence is crucial for boosting the efficiency of quantum processes, for example, in quantum biology and other open systems. The key to the success in simulating those open quantum systems is therefore the ability of controlling decoherence, instead of eliminating it. Motivated by simulating quantum open systems with Nitrogen-Vacancy centers, which has become an increasingly important platform for quantum information processing tasks, we developed a new set of steering pulse sequences for controlling various coherence times of Nitrogen-Vacancy centers; our method is based on a hybrid approach that exploits ingredients in both digital and analog quantum simulations to dynamically couple or decouple the system with the physical environment. Our numerical simulations, based on experimentally-feasible parameters, indicate that decoherence of Nitrogen-Vacancy centers can be controlled externally to a very large extend.

摘要

量子力学系统通过与外部环境相互作用而失去相干性——这一过程被称为退相干。尽管退相干对量子信息处理中的大多数任务不利,但在提高量子过程的效率方面,相当程度的退相干至关重要,例如在量子生物学和其他开放系统中。因此,模拟那些开放量子系统成功的关键在于控制退相干的能力,而非消除它。受利用氮空位中心模拟量子开放系统的启发,氮空位中心已成为量子信息处理任务中越来越重要的平台,我们开发了一套新的操控脉冲序列,用于控制氮空位中心的各种相干时间;我们的方法基于一种混合方法,该方法利用数字和模拟量子模拟中的要素,使系统与物理环境动态耦合或解耦。我们基于实验可行参数的数值模拟表明,氮空位中心的退相干可以在很大程度上通过外部进行控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74c1/5607330/7dba68014005/41598_2017_12280_Fig1_HTML.jpg

相似文献

1
Decoherence Control of Nitrogen-Vacancy Centers.
Sci Rep. 2017 Sep 20;7(1):11937. doi: 10.1038/s41598-017-12280-z.
3
Solid-state electronic spin coherence time approaching one second.
Nat Commun. 2013;4:1743. doi: 10.1038/ncomms2771.
5
Controlling the quantum dynamics of a mesoscopic spin bath in diamond.
Sci Rep. 2012;2:382. doi: 10.1038/srep00382. Epub 2012 Apr 25.
6
Coherence-protected quantum gate by continuous dynamical decoupling in diamond.
Phys Rev Lett. 2012 Aug 17;109(7):070502. doi: 10.1103/PhysRevLett.109.070502. Epub 2012 Aug 16.
8
Coherence-preserving quantum bits.
Phys Rev Lett. 2001 Dec 10;87(24):247902. doi: 10.1103/PhysRevLett.87.247902. Epub 2001 Nov 26.
9
Anomalous decoherence effect in a quantum bath.
Phys Rev Lett. 2011 May 27;106(21):217205. doi: 10.1103/PhysRevLett.106.217205. Epub 2011 May 26.
10
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
J Comput Sci Syst Biol. 2014 Jul;7(4):119-136. doi: 10.4172/jcsb.1000147. Epub 2014 May 22.

引用本文的文献

1
Optical tomography dynamics induced by qubit-resonator interaction under intrinsic decoherence.
Sci Rep. 2022 Oct 13;12(1):17162. doi: 10.1038/s41598-022-21348-4.
2
Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond.
Materials (Basel). 2021 Feb 9;14(4):833. doi: 10.3390/ma14040833.

本文引用的文献

1
Universal bound on sampling bosons in linear optics and its computational implications.
Natl Sci Rev. 2019 Jul;6(4):719-729. doi: 10.1093/nsr/nwz048. Epub 2019 Apr 9.
2
Direct Measurement of Topological Numbers with Spins in Diamond.
Phys Rev Lett. 2016 Aug 5;117(6):060503. doi: 10.1103/PhysRevLett.117.060503. Epub 2016 Aug 4.
3
Robust bidirectional links for photonic quantum networks.
Sci Adv. 2016 Jan 8;2(1):e1500672. doi: 10.1126/sciadv.1500672. eCollection 2016 Jan.
4
Suppression of Dephasing by Qubit Motion in Superconducting Circuits.
Phys Rev Lett. 2016 Jan 8;116(1):010501. doi: 10.1103/PhysRevLett.116.010501.
5
Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register.
ACS Nano. 2015 Aug 25;9(8):7769-74. doi: 10.1021/acsnano.5b01651. Epub 2015 Apr 29.
6
Conditional control of donor nuclear spins in silicon using stark shifts.
Phys Rev Lett. 2014 Oct 10;113(15):157601. doi: 10.1103/PhysRevLett.113.157601. Epub 2014 Oct 6.
7
Hierarchy of stochastic pure states for open quantum system dynamics.
Phys Rev Lett. 2014 Oct 10;113(15):150403. doi: 10.1103/PhysRevLett.113.150403. Epub 2014 Oct 8.
8
From transistor to trapped-ion computers for quantum chemistry.
Sci Rep. 2014 Jan 7;4:3589. doi: 10.1038/srep03589.
9
Digital quantum simulation of the statistical mechanics of a frustrated magnet.
Nat Commun. 2012 Jun 6;3:880. doi: 10.1038/ncomms1860.
10
Scaling of dynamical decoupling for spin qubits.
Phys Rev Lett. 2012 Feb 24;108(8):086802. doi: 10.1103/PhysRevLett.108.086802. Epub 2012 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验