Yung Man-Hong, Gao Xun, Huh Joonsuk
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Natl Sci Rev. 2019 Jul;6(4):719-729. doi: 10.1093/nsr/nwz048. Epub 2019 Apr 9.
In linear optics, photons are scattered in a network through passive optical elements including beam splitters and phase shifters, leading to many intriguing applications in physics, such as Mach-Zehnder interferometry, the Hong-Ou-Mandel effect, and tests of fundamental quantum mechanics. Here we present the fundamental limit in the transition amplitudes of bosons, applicable to all physical linear optical networks. Apart from boson sampling, this transition bound results in many other interesting applications, including behaviors of Bose-Einstein condensates (BEC) in optical networks, counterparts of Hong-Ou-Mandel effects for multiple photons, and approximating permanents of matrices. In addition, this general bound implies the existence of a polynomial-time randomized algorithm for estimating the transition amplitudes of bosons, which represents a solution to an open problem raised by Aaronson and Hance ( 2012; : 541-59). Consequently, this bound implies that computational decision problems encoded in linear optics, prepared and detected in the Fock basis, can be solved efficiently by classical computers within additive errors. Furthermore, our result also leads to a classical sampling algorithm that can be applied to calculate the many-body wave functions and the S-matrix of bosonic particles.
在线性光学中,光子通过包括分束器和移相器在内的无源光学元件在网络中散射,从而在物理学中产生了许多有趣的应用,如马赫-曾德尔干涉测量、洪-欧-曼德尔效应以及基本量子力学测试。在此,我们给出了适用于所有物理线性光学网络的玻色子跃迁振幅的基本极限。除了玻色子采样外,这个跃迁界限还带来了许多其他有趣的应用,包括光学网络中玻色-爱因斯坦凝聚体(BEC)的行为、多个光子的洪-欧-曼德尔效应的对应情况以及矩阵的近似永久式。此外,这个通用界限意味着存在一种用于估计玻色子跃迁振幅的多项式时间随机算法,这代表了解决由阿隆森和汉斯(2012;:541 - 59)提出的一个开放性问题的方案。因此,这个界限意味着在福克基下制备和检测的、编码在线性光学中的计算决策问题可以由经典计算机在加法误差范围内有效地解决。此外,我们的结果还导致了一种经典采样算法,该算法可用于计算玻色子粒子的多体波函数和S矩阵。