Third Institute of Physics, Research Center Scope and IQST, University of Stuttgart , 70569 Stuttgart, Germany.
ISI Foundation , Via Alassio 11/c, 10126 Torino, Italy.
ACS Nano. 2015 Aug 25;9(8):7769-74. doi: 10.1021/acsnano.5b01651. Epub 2015 Apr 29.
Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.
从头计算分子性质是量子计算最有前途的应用之一。虽然这个问题被广泛认为是经典计算机无法解决的,但现有的高效量子算法有可能极大地加速从材料科学到药物发现等领域的研究通量。我们使用在钻石中的氮空位(NV)缺陷中实现的固态量子寄存器,计算了最小基氦氢阳离子 HeH(+) 的键离解曲线。此外,我们报告了大约 10(-14) 哈特利的能量不确定性(根据我们的模型基础),这比所需的化学精度低 10 个数量级。由于钻石中的 NV 中心为量子信息处理提供了一个强大而直接的平台,我们的工作朝着完全可扩展的固态量子化学模拟器的实现迈出了重要的一步。