Okagbue Hilary I, Adamu Muminu O, Oguntunde Pelumi E, Opanuga Abiodun A, Owoloko Enahoro A, Bishop Sheila A
Department of Mathematics, Covenant University, Canaanland, Ota, Nigeria.
Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria.
Data Brief. 2017 Sep 1;14:686-694. doi: 10.1016/j.dib.2017.08.021. eCollection 2017 Oct.
The data in this article was obtained from the algebraic and statistical analysis of the first 331 primitive Pythagorean triples. The ordered sample is a subset of the larger Pythagorean triples. A primitive Pythagorean triple consists of three integers a, b and c such that; [Formula: see text]. A primitive Pythagorean triple is one which the greatest common divisor (gcd), that is; [Formula: see text] or a, b and c are coprime, and pairwise coprime. The dataset describe the various algebraic and statistical manipulations of the integers a, b and c that constitute the primitive Pythagorean triples. The correlation between the integers at each analysis was included. The data analysis of the non-normal nature of the integers was also included in this article. The data is open to criticism, adaptation and detailed extended analysis.
本文中的数据来自对前331个本原毕达哥拉斯三元组的代数和统计分析。有序样本是更大的毕达哥拉斯三元组的一个子集。一个本原毕达哥拉斯三元组由三个整数a、b和c组成,满足:[公式:见原文]。一个本原毕达哥拉斯三元组是指其最大公约数(gcd),即;[公式:见原文],或者a、b和c互质,且两两互质。该数据集描述了构成本原毕达哥拉斯三元组的整数a、b和c的各种代数和统计操作。每次分析中整数之间的相关性也包含在内。本文还包括了对整数非正态性质的数据分析。这些数据接受批评、改编和详细的扩展分析。