Suppr超能文献

关于影响尼日利亚拉各斯伊科罗杜路沿线人行天桥交易的因素的数据集。

Datasets on factors influencing trading on pedestrian bridges along Ikorodu road, Lagos, Nigeria.

作者信息

Ajakaiye Olabisi O, Afolabi Hammed A, Akinola Adedotun O, Okagbue Hilary I, Olagunju Omoniyi O, Adetoro Olufumilayo O

机构信息

Department of Urban and Regional Planning, Yaba College of Technology, Lagos, Nigeria.

Department of Architecture, Covenant University, Canaanland, Ota, Nigeria.

出版信息

Data Brief. 2018 Jun 22;19:1584-1593. doi: 10.1016/j.dib.2018.06.055. eCollection 2018 Aug.

Abstract

The survey data was obtained from a study that investigated factors responsible for the patronage of the traders on the pedestrian bridges along Ikorodu road, Lagos state, Nigeria. Survey research was adopted for this investigation while data were primarily sourced. The sample frame adopted for this study was the average total number of people using the pedestrian bridges per day along Ikorodu road was estimated as 240,380, while the sample size was 384, based on Cochran׳s sample size formula. The convenience, non-probability sampling technique was used for the survey. Data were analyzed using descriptive statistics (frequency tables) and inferential statistics techniques (factor analysis for data reduction and categorization, communalities of variables and KMO) while Likert scale was used as a means of measurement. The datasets can be considered in the commerce and environmental policies of Lagos State and Nigeria with a view to recommending policies that will encourage easy movement of people and the effective uses of the transport facilities.

摘要

调查数据来自一项研究,该研究调查了尼日利亚拉各斯州伊科罗杜路沿线人行天桥上交易商光顾情况的影响因素。本调查采用了调查研究方法,同时主要收集了数据。本研究采用的样本框架是,伊科罗杜路沿线人行天桥每天使用人数的平均总数估计为240,380人,而根据 Cochr an样本量公式,样本量为384。调查采用了便利的非概率抽样技术。使用描述性统计(频率表)和推断性统计技术(用于数据简化和分类的因子分析、变量共同度和KMO)对数据进行分析,同时使用李克特量表作为测量手段。这些数据集可用于拉各斯州和尼日利亚的商业和环境政策,以便推荐鼓励人员便捷流动和有效利用交通设施的政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12e/6141263/30402c8fb3cc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验