生物物理刺激:透明软骨中电刺激和机械刺激的综述。
Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.
机构信息
1 Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia.
2 Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia.
出版信息
Cartilage. 2019 Apr;10(2):157-172. doi: 10.1177/1947603517730637. Epub 2017 Sep 21.
OBJECTIVE
Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior.
DESIGN
Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years.
RESULTS
It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes.
CONCLUSION
The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
目的
透明软骨退行性病变导致形态和生物力学变化,从而导致软骨组织损伤。为了寻求治疗选择,已经提出了电刺激和机械刺激来改善软骨修复的组织工程方法。本综述的目的是强调电刺激和机械刺激对软骨细胞行为的影响。
设计
系统地复习了不同的信息来源和 MEDLINE 数据库,以总结过去 40 年来的不同贡献。
结果
已经表明,电刺激可以增加细胞增殖,并刺激与关节软骨细胞外基质相关的分子的合成,如 II 型胶原、聚集蛋白聚糖和糖胺聚糖,而机械负荷则在软骨细胞中引发合成代谢和分解代谢反应。
结论
生物物理刺激可以增加细胞增殖并刺激与透明软骨细胞外基质维持相关的分子。
相似文献
Biotechnol Bioeng. 2003-5-20
Br J Oral Maxillofac Surg. 2015-2
Acta Orthop Traumatol Turc. 2007
Proc Inst Mech Eng H. 2008-7
Acta Biomater. 2020-1-15
引用本文的文献
Front Bioeng Biotechnol. 2025-2-3
Sci Adv. 2024-4-19
本文引用的文献
J Appl Genet. 2015-5
Matrix Biol. 2014-10
Biomed Res Int. 2014
Biomech Model Mechanobiol. 2015-1