Hall Justin, Brault Amy, Vincent Fabien, Weng Shawn, Wang Hong, Dumlao Darren, Aulabaugh Ann, Aivazian Dikran, Castro Dana, Chen Ming, Culp Jeffrey, Dower Ken, Gardner Joseph, Hawrylik Steven, Golenbock Douglas, Hepworth David, Horn Mark, Jones Lyn, Jones Peter, Latz Eicke, Li Jing, Lin Lih-Ling, Lin Wen, Lin David, Lovering Frank, Niljanskul Nootaree, Nistler Ryan, Pierce Betsy, Plotnikova Olga, Schmitt Daniel, Shanker Suman, Smith James, Snyder William, Subashi Timothy, Trujillo John, Tyminski Edyta, Wang Guoxing, Wong Jimson, Lefker Bruce, Dakin Leslie, Leach Karen
Medicine Design, Pfizer, Groton, Connecticut, United States of America.
Pfizer Centers for Therapeutic Innovation (CTI), Boston, Massachusetts, United States of America.
PLoS One. 2017 Sep 21;12(9):e0184843. doi: 10.1371/journal.pone.0184843. eCollection 2017.
Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.
环鸟苷酸-腺苷酸合成酶(cGAS)在响应胞质双链DNA时启动先天性免疫系统。在与双链DNA结合并被激活后,cGAS利用ATP和GTP合成2', 3'-环鸟苷酸-腺苷酸(cGAMP),一种具有混合2'-5'和3'-5'磷酸二酯键的环状二核苷酸第二信使。cGAS的不适当刺激与自身免疫性疾病如系统性红斑狼疮有关,因此抑制cGAS在某些疾病中可能具有治疗益处;然而,cGAS活性位点的大小和极性使其成为开发传统底物竞争性抑制剂的具有挑战性的靶点。我们在此报告了一种从低亲和力片段命中物开发的高亲和力(KD = 200 nM)抑制剂,并提供了支持性的生化和结构数据,表明这些分子与cGAS活性位点结合。我们还报告了一种基于cGAS荧光偏振(FP)的新的高通量检测方法,以实现cGAS抑制剂的快速鉴定和优化。这种FP检测方法使用Cy5标记的cGAMP与一种新型高亲和力单克隆抗体结合,该抗体特异性识别cGAMP,对cAMP、cGMP、ATP或GTP无交叉反应。鉴于其在先天性免疫反应中的作用,cGAS是自身炎症性疾病的一个有前景的治疗靶点。我们的结果证明了其可成药性,提供了一种高亲和力工具化合物,并建立了一种用于鉴定下一代cGAS抑制剂的高通量检测方法。