Wilson David M, Rieckher Matthias, Williams Ashley B, Schumacher Björn
Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
Nucleic Acids Res. 2017 Sep 19;45(16):9467-9480. doi: 10.1093/nar/gkx660.
DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.g. XPA-1 and XPF-1) imparted extreme sensitivity to TMP/UVA relative to wild-type animals, manifested as developmental arrest, defects in adult tissue morphology and functionality, and shortened lifespan. Compensatory roles for global-genome (XPC-1) and transcription-coupled (CSB-1) NER in ICL sensing were exposed. The analysis also revealed contributions of homologous recombination (BRC-1/BRCA1), the MUS-81, EXO-1, SLX-1 and FAN-1 nucleases, and the DOG-1 (FANCJ) helicase in ICL resolution, influenced by the replicative-status of the cell/tissue. No obvious or critical role in ICL repair was seen for non-homologous end-joining (cku-80) or base excision repair (nth-1, exo-3), the Fanconi-related proteins BRC-2 (BRCA2/FANCD1) and FCD-2 (FANCD2), the WRN-1 or HIM-6 (BLM) helicases, or the GEN-1 or MRT-1 (SNM1) nucleases. Our efforts uncover replication-dependent and -independent ICL repair networks, and establish nematodes as a model for investigating the repair and consequences of DNA crosslinks in metazoan development and in adult post-mitotic and proliferative germ cells.
DNA链间交联(ICL)由内源性因素和化疗药物产生,对基因组稳定性和细胞存活构成威胁。利用秀丽隐杆线虫突变体,我们鉴定出了一些DNA修复因子,这些因子可抵御三氧沙林/紫外线A(TMP/UVA)在发育和衰老过程中产生的ICL的基因毒性。与野生型动物相比,核苷酸切除修复(NER)组分(如XPA - 1和XPF - 1)中的突变使线虫对TMP/UVA极度敏感,表现为发育停滞、成体组织形态和功能缺陷以及寿命缩短。揭示了全基因组NER(XPC - 1)和转录偶联NER(CSB - 1)在ICL感知中的补偿作用。分析还揭示了同源重组(BRC - 1/BRCA1)、MUS - 81、EXO - 1、SLX - 1和FAN - 1核酸酶以及DOG - 1(FANCJ)解旋酶在ICL修复中的作用,这些作用受细胞/组织复制状态的影响。未观察到非同源末端连接(cku - 80)或碱基切除修复(nth - 1、exo - 3)、范可尼相关蛋白BRC - 2(BRCA2/FANCD1)和FCD - 2(FANCD2)、WRN - 1或HIM - 6(BLM)解旋酶或GEN - 1或MRT - 1(SNM1)核酸酶在ICL修复中有明显或关键作用。我们的研究揭示了依赖复制和不依赖复制的ICL修复网络,并确立线虫作为研究后生动物发育以及成体有丝分裂后和增殖生殖细胞中DNA交联修复及其后果的模型。